Recommended dose voxel size and statistical uncertainty parameters for precision of Monte Carlo dose calculation in stereotactic radiotherapy

Research output: Contribution to journalArticlepeer-review

Abstract

Monte Carlo (MC)-based treatment planning requires a choice of dose voxel size (DVS) and statistical uncertainty (SU). These parameters effect both the precision of displayed dose distribution and time taken to complete a calculation. For efficient, accurate, and precise treatment planning in a clinical setting, optimal values should be selected. In this investigation, 30 volumetric modulated arc therapy (VMAT) stereotactic radiotherapy (SRT) treatment plans, 10 brain, 10 lung, and 10 spine were calculated in the Monaco 5.11.02 treatment planning system (TPS). Each plan was calculated with a DVS of 0.1 and 0.2 cm using SU values of 0.50%, 0.75%, 1.00%, 1.50%, and 2.00%, along with a ground truth calculation using a DVS of 0.1 cm and SU of 0.15%. The variance at each relative dose level was calculated for all SU settings to assess their relationship. The variation from the ground truth calculation for each DVS and SU combination was determined for a range of DVH metrics and plan quality indices along with the time taken to complete the calculations. Finally, the effect of defining the maximum dose using a volume of 0.035 cc was compared to 0.100 cc when considering DVS and SU settings. Changes in the DVS produced greater variations from the ground truth calculation than changes in SU across the values tested. Plan quality metrics and mean dose values showed less sensitivity to changes in SU than DVH metrics. From this study, it was concluded that while maintaining an average calculation time of <10 min, 75% of plans could be calculated with variations of <2.0% from their ground truth values when using an SU setting of 1.50% and a DVS of 0.1 cm in the case of brain or spine plans, and a 0.2 cm DVS in the case of lung plans.

Original languageEnglish
JournalJournal of Applied Clinical Medical Physics
DOIs
Publication statusE-pub ahead of print - 30 Oct 2020

Fingerprint

Dive into the research topics of 'Recommended dose voxel size and statistical uncertainty parameters for precision of Monte Carlo dose calculation in stereotactic radiotherapy'. Together they form a unique fingerprint.

Cite this