Reactivity of Ferrocenyl Phosphates Bearing (Hetero-)Aromatics and [3]Ferrocenophanes toward Anionic Phospho-Fries Rearrangements

Marcus Korb, Steve W. Lehrich, Heinrich Lang

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


The temperature-dependent behavior within anionic phospho-Fries rearrangements (apFr) of P(O)(OFc)(n),(EAr)(3-n) (Fc = Fe(eta(5)-C5H5)(eta(5)-C5H4); E = O; Ar = phenyl, naphthyls, (R)-BINOL, [3]ferrocenophanyl; E = N, 1H-pyrrolyl, 1H-indolyl, 9H-carbazolyl; n = 1-3) is reported. While Fc undergoes one, the Ph-based apFr depends on temperature. First, the aryls are lithiated and rearranged, followed by Fc and N-heterocycles. Addition of Me2SO4 thus gave methylated Fc, contrary to non-organometallic aromatics giving mixtures of HO and MeO derivatives. The (R)-BINOL Fc phosphate gave Fc-rearranged phosphonate in 91% de. Exchanging O- with N-aliphatics prevented apFr, due to higher electron density at P. Also 1,2-N -> C migrations were observed. X-ray analysis confirms 1D H bridge bonds for OH and NH derivatives. The differences in reactivity between N-aliphatic and N-aromatic phosphoramidates were verified by electrochemistry. The redox potentials revealed lower values for the electron-rich aliphatics, showing no apFr, preventing a nucleophilic attack at P after lithiation. Redox separations for multiple Fc molecules are based on electrostatic interactions.


Original languageEnglish
Pages (from-to)3102-3124
Number of pages23
JournalJournal of Organic Chemistry
Issue number6
Publication statusPublished - 17 Mar 2017
Externally publishedYes


Dive into the research topics of 'Reactivity of Ferrocenyl Phosphates Bearing (Hetero-)Aromatics and [3]Ferrocenophanes toward Anionic Phospho-Fries Rearrangements'. Together they form a unique fingerprint.

Cite this