Projects per year
Abstract
We propose a constrained matrix factorization approach for linear unmixing of hyperspectral data. Our approach factorizes a hyperspectral cube into its constituent endmembers and their fractional abundances such that the endmembers are sparse nonnegative linear combinations of the observed spectra themselves. The association between the extracted endmembers and the observed spectra is explicitly noted for physical interpretability. To ensure reliable unmixing, we make the matrix factorization procedure robust to outliers in the observed spectra. Our approach simultaneously computes the endmembers and their abundances in an efficient and unsupervised manner. The extracted endmembers are nonnegative quantities, whereas their abundances additionally follow the sum-to-one constraint. We thoroughly evaluate our approach using synthetic data with white and correlated noise as well as real hyperspectral data. Experimental results establish the effectiveness of our approach.
Original language | English |
---|---|
Article number | 7875072 |
Pages (from-to) | 3354-3366 |
Number of pages | 13 |
Journal | IEEE Transactions on Geoscience and Remote Sensing |
Volume | 55 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 2017 |
Fingerprint
Dive into the research topics of 'RCMF: Robust Constrained Matrix Factorization for Hyperspectral Unmixing'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Active Multispectral Computer Vision for Defence & Security
Mian, A. (Investigator 01)
ARC Australian Research Council
1/01/11 → 31/10/16
Project: Research