Projects per year
Abstract
This work describes the operation of a high frequency gravitational wave detector based on a cryogenic bulk acoustic wave cavity and reports observation of rare events during 153 days of operation over two separate experimental runs (run 1 and run 2). In both run 1 and run 2, two modes were simultaneously monitored. Across both runs, the third overtone of the fast shear mode (3B) operating at 5.506 MHz was monitored; whereas in run 1, the second mode was chosen to be the fifth overtone of the slow shear mode (5C) operating at 8.392 MHz. However, in run 2, the second mode was selected to be closer in frequency to the first mode; and it was chosen to be the third overtone of the slow shear mode (3C) operating at 4.993 MHz. Two strong events were observed as transients responding to energy deposition within acoustic modes of the cavity. The first event occurred during run 1 on 12 May 2019 (UTC), and it was observed in the 5.506 MHz mode; whereas the second mode at 8.392 MHz observed no event. During run 2, a second event occurred on 27 November 2019 (UTC) and was observed by both modes. Timings of the events were checked against available environmental observations as well as data from other detectors. Various possibilities explaining the origins of the events are discussed.
Original language | English |
---|---|
Article number | 071102 |
Journal | Physical Review Letters |
Volume | 127 |
Issue number | 7 |
DOIs | |
Publication status | Published - 13 Aug 2021 |
Fingerprint
Dive into the research topics of 'Rare Events Detected with a Bulk Acoustic Wave High Frequency Gravitational Wave Antenna'. Together they form a unique fingerprint.-
Centre of Excellence for Dark Matter Particle Physics
Barberio, E. (Investigator 01), Williams, A. (Investigator 02), Bell, N. (Investigator 03), Stuchbery, A. (Investigator 04), Tobar, M. (Investigator 05), Boehm, C. (Investigator 06) & Wallner, A. (Investigator 07)
ARC Australian Research Council
1/01/20 → 31/12/26
Project: Research
-
Wideband Tuneable Low Phase Noise Oscillators for 5G
Tobar, M. (Investigator 01), Goryachev, M. (Investigator 02) & Ivanov, E. (Investigator 03)
ARC Centre of Excellence for Engineered Quantum Systems
1/01/21 → 31/12/21
Project: Research
-
Precision Low Energy Experiments to Search for New Physics
Tobar, M. (Investigator 01), Goryachev, M. (Investigator 02) & Ivanov, E. (Investigator 03)
ARC Australian Research Council
1/01/19 → 31/12/21
Project: Research
Research output
- 27 Citations
- 1 Doctoral Thesis
-
Acoustic resonators for tests of fundamental physics
Campbell, W., 2024, (Unpublished)Research output: Thesis › Doctoral Thesis
File247 Downloads (Pure)