Rapid genetic identification of local provenance seed collection zones for ecological restoration and biodiversity conservation

    Research output: Contribution to journalArticle

    32 Citations (Scopus)

    Abstract

    The ecological restoration of native plant communities requires the collection of large amounts of seed. Use of non-local provenance seed can have detrimental consequences for the success of restoration if there is a home-site advantage, and for nature conservation through the erosion of natural patterns of population genetic structuring and/or genetic swamping (and extirpation) of locally significant genotypes. As part of an ongoing project to genetically delineate local provenance seed collection zones for species within a large urban bushland remnant of high conservation value, we assessed population genetic differentiation in two widespread coastal leguminous species, Acacia rostellifera and A. cochlearis (Fabaceae), commonly used in restoration programmes in SW Australia. Using amplified fragment length polymorphism (AFLP), we found very high levels of genetic differentiation among populations, with an analysis of molecular variance (AMOVA) showing more than 50% of the total genetic variance to be partitioned among populations (ΦST=0.58 and 0.51 for A. rostellifera and A. cochlearis, respectively), and marked non-overlap of almost all potential seed source populations from the local population in ordinations. Our results suggest extremely restricted natural dispersal among populations, possibly due to a combination of low seed set, seed dispersal by ants, clonality, a linear distribution of naturally fragmented populations and possibly low outcrossing rates. We suggest a narrow seed collection zone should be applied to these species for the conservation of genetic diversity and natural patterns of population genetic structure, and we highlight the value and importance of provenance evaluation to ecological restoration.
    Original languageEnglish
    Pages (from-to)190-199
    JournalJournal for Nature Conservation
    Volume14
    Issue number3-4
    DOIs
    Publication statusPublished - 2006

    Fingerprint

    seed collection
    provenance
    biodiversity
    population genetics
    seed
    genetic differentiation
    bushland
    seed set
    outcrossing
    seed dispersal
    nature conservation
    ordination
    genetic structure
    ant
    plant community
    polymorphism
    genotype
    erosion
    restoration

    Cite this

    @article{8c049b13c5b54e16a40b889a271f5d73,
    title = "Rapid genetic identification of local provenance seed collection zones for ecological restoration and biodiversity conservation",
    abstract = "The ecological restoration of native plant communities requires the collection of large amounts of seed. Use of non-local provenance seed can have detrimental consequences for the success of restoration if there is a home-site advantage, and for nature conservation through the erosion of natural patterns of population genetic structuring and/or genetic swamping (and extirpation) of locally significant genotypes. As part of an ongoing project to genetically delineate local provenance seed collection zones for species within a large urban bushland remnant of high conservation value, we assessed population genetic differentiation in two widespread coastal leguminous species, Acacia rostellifera and A. cochlearis (Fabaceae), commonly used in restoration programmes in SW Australia. Using amplified fragment length polymorphism (AFLP), we found very high levels of genetic differentiation among populations, with an analysis of molecular variance (AMOVA) showing more than 50{\%} of the total genetic variance to be partitioned among populations (ΦST=0.58 and 0.51 for A. rostellifera and A. cochlearis, respectively), and marked non-overlap of almost all potential seed source populations from the local population in ordinations. Our results suggest extremely restricted natural dispersal among populations, possibly due to a combination of low seed set, seed dispersal by ants, clonality, a linear distribution of naturally fragmented populations and possibly low outcrossing rates. We suggest a narrow seed collection zone should be applied to these species for the conservation of genetic diversity and natural patterns of population genetic structure, and we highlight the value and importance of provenance evaluation to ecological restoration.",
    author = "Siegfried Krauss and T.H. He",
    year = "2006",
    doi = "10.1016/j.jnc.2006.05.002",
    language = "English",
    volume = "14",
    pages = "190--199",
    journal = "Journal for Nature Conservation",
    issn = "1617-1381",
    publisher = "Elsevier",
    number = "3-4",

    }

    TY - JOUR

    T1 - Rapid genetic identification of local provenance seed collection zones for ecological restoration and biodiversity conservation

    AU - Krauss, Siegfried

    AU - He, T.H.

    PY - 2006

    Y1 - 2006

    N2 - The ecological restoration of native plant communities requires the collection of large amounts of seed. Use of non-local provenance seed can have detrimental consequences for the success of restoration if there is a home-site advantage, and for nature conservation through the erosion of natural patterns of population genetic structuring and/or genetic swamping (and extirpation) of locally significant genotypes. As part of an ongoing project to genetically delineate local provenance seed collection zones for species within a large urban bushland remnant of high conservation value, we assessed population genetic differentiation in two widespread coastal leguminous species, Acacia rostellifera and A. cochlearis (Fabaceae), commonly used in restoration programmes in SW Australia. Using amplified fragment length polymorphism (AFLP), we found very high levels of genetic differentiation among populations, with an analysis of molecular variance (AMOVA) showing more than 50% of the total genetic variance to be partitioned among populations (ΦST=0.58 and 0.51 for A. rostellifera and A. cochlearis, respectively), and marked non-overlap of almost all potential seed source populations from the local population in ordinations. Our results suggest extremely restricted natural dispersal among populations, possibly due to a combination of low seed set, seed dispersal by ants, clonality, a linear distribution of naturally fragmented populations and possibly low outcrossing rates. We suggest a narrow seed collection zone should be applied to these species for the conservation of genetic diversity and natural patterns of population genetic structure, and we highlight the value and importance of provenance evaluation to ecological restoration.

    AB - The ecological restoration of native plant communities requires the collection of large amounts of seed. Use of non-local provenance seed can have detrimental consequences for the success of restoration if there is a home-site advantage, and for nature conservation through the erosion of natural patterns of population genetic structuring and/or genetic swamping (and extirpation) of locally significant genotypes. As part of an ongoing project to genetically delineate local provenance seed collection zones for species within a large urban bushland remnant of high conservation value, we assessed population genetic differentiation in two widespread coastal leguminous species, Acacia rostellifera and A. cochlearis (Fabaceae), commonly used in restoration programmes in SW Australia. Using amplified fragment length polymorphism (AFLP), we found very high levels of genetic differentiation among populations, with an analysis of molecular variance (AMOVA) showing more than 50% of the total genetic variance to be partitioned among populations (ΦST=0.58 and 0.51 for A. rostellifera and A. cochlearis, respectively), and marked non-overlap of almost all potential seed source populations from the local population in ordinations. Our results suggest extremely restricted natural dispersal among populations, possibly due to a combination of low seed set, seed dispersal by ants, clonality, a linear distribution of naturally fragmented populations and possibly low outcrossing rates. We suggest a narrow seed collection zone should be applied to these species for the conservation of genetic diversity and natural patterns of population genetic structure, and we highlight the value and importance of provenance evaluation to ecological restoration.

    U2 - 10.1016/j.jnc.2006.05.002

    DO - 10.1016/j.jnc.2006.05.002

    M3 - Article

    VL - 14

    SP - 190

    EP - 199

    JO - Journal for Nature Conservation

    JF - Journal for Nature Conservation

    SN - 1617-1381

    IS - 3-4

    ER -