Rainfall affects leaching of pre-emergent herbicide from wheat residue into the soil

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

No-tillage with stubble retention is a widely used cropping system for its conservation and yield benefits. The no-tillage farming system in southern Australia relies heavily on herbicides for weed management, but heavy crop residues may have a negative impact on the activity of pre-emergent herbicides applied. Any herbicide intercepted by the crop residue may not reach the soil surface without timely rainfall and may dissipate due to volatilisation, photo-degradation and/or microbial activity. Two experiments were carried out to investigate the interception of prosulfocarb, pyroxasulfone, and trifluralin herbicides by wheat residue and retention following simulated rainfall. For the first experiment, there were four simulated rainfall amounts (0, 5, 10, and 20 mm), three intensities (5, 10, and 20 mm h-1) and five application times (immediately after spraying herbicide, 6 h, 1, 7, and 14 days after spraying). In the second experiment, 20 mm of rainfall was applied at 10 mm h-1 in either 4 × 5 mm rainfall events over two days, 2 × 10 mm rainfall events over one day, or a single 20 mm rainfall event, with a no-rainfall control treatment. Bioassays were used to assess the herbicide activity/availability in the soil and remaining on the residue, using cucumber (Cucumis sativus L.) and Italian ryegrass (Lolium multiflorum Lam.) as indicator plants. At higher rainfall amounts, most of the herbicide leached from the stubble into the soil soon after application; more so with rain in one event rather than multiple events. However, the intensity of rainfall had no effect. Pyroxasulfone leached easily from the residue to the soil to potentially offer good weed control, prosulfocarb had an intermediary leaching effect, while only a small amount of trifluralin leached from stubble after rain. Therefore, in no-tillage situations with large amounts of crop residue present on the soil surface, herbicides that leach easily from the residue should be considered, like pyroxasulfone.

Original languageEnglish
Article numbere0210219
JournalPLoS One
Volume14
Issue number2
DOIs
Publication statusPublished - 1 Feb 2019

Fingerprint

Herbicides
Leaching
Triticum
Rain
leaching
Soil
herbicides
rain
Soils
wheat
pyroxasulfone
soil
Trifluralin
stubble
crop residues
Cucumis sativus
Lolium
no-tillage
trifluralin
rainfall simulation

Cite this

@article{d5e355ea76f843ee95ca30f3fac4b526,
title = "Rainfall affects leaching of pre-emergent herbicide from wheat residue into the soil",
abstract = "No-tillage with stubble retention is a widely used cropping system for its conservation and yield benefits. The no-tillage farming system in southern Australia relies heavily on herbicides for weed management, but heavy crop residues may have a negative impact on the activity of pre-emergent herbicides applied. Any herbicide intercepted by the crop residue may not reach the soil surface without timely rainfall and may dissipate due to volatilisation, photo-degradation and/or microbial activity. Two experiments were carried out to investigate the interception of prosulfocarb, pyroxasulfone, and trifluralin herbicides by wheat residue and retention following simulated rainfall. For the first experiment, there were four simulated rainfall amounts (0, 5, 10, and 20 mm), three intensities (5, 10, and 20 mm h-1) and five application times (immediately after spraying herbicide, 6 h, 1, 7, and 14 days after spraying). In the second experiment, 20 mm of rainfall was applied at 10 mm h-1 in either 4 × 5 mm rainfall events over two days, 2 × 10 mm rainfall events over one day, or a single 20 mm rainfall event, with a no-rainfall control treatment. Bioassays were used to assess the herbicide activity/availability in the soil and remaining on the residue, using cucumber (Cucumis sativus L.) and Italian ryegrass (Lolium multiflorum Lam.) as indicator plants. At higher rainfall amounts, most of the herbicide leached from the stubble into the soil soon after application; more so with rain in one event rather than multiple events. However, the intensity of rainfall had no effect. Pyroxasulfone leached easily from the residue to the soil to potentially offer good weed control, prosulfocarb had an intermediary leaching effect, while only a small amount of trifluralin leached from stubble after rain. Therefore, in no-tillage situations with large amounts of crop residue present on the soil surface, herbicides that leach easily from the residue should be considered, like pyroxasulfone.",
author = "Yaseen Khalil and Ken Flower and Siddique, {Kadambot H.M.} and Phil Ward",
year = "2019",
month = "2",
day = "1",
doi = "10.1371/journal.pone.0210219",
language = "English",
volume = "14",
journal = "P L o S One",
issn = "1932-6203",
publisher = "Public Library of Science (PLoS)",
number = "2",

}

Rainfall affects leaching of pre-emergent herbicide from wheat residue into the soil. / Khalil, Yaseen; Flower, Ken; Siddique, Kadambot H.M.; Ward, Phil.

In: PLoS One, Vol. 14, No. 2, e0210219, 01.02.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Rainfall affects leaching of pre-emergent herbicide from wheat residue into the soil

AU - Khalil, Yaseen

AU - Flower, Ken

AU - Siddique, Kadambot H.M.

AU - Ward, Phil

PY - 2019/2/1

Y1 - 2019/2/1

N2 - No-tillage with stubble retention is a widely used cropping system for its conservation and yield benefits. The no-tillage farming system in southern Australia relies heavily on herbicides for weed management, but heavy crop residues may have a negative impact on the activity of pre-emergent herbicides applied. Any herbicide intercepted by the crop residue may not reach the soil surface without timely rainfall and may dissipate due to volatilisation, photo-degradation and/or microbial activity. Two experiments were carried out to investigate the interception of prosulfocarb, pyroxasulfone, and trifluralin herbicides by wheat residue and retention following simulated rainfall. For the first experiment, there were four simulated rainfall amounts (0, 5, 10, and 20 mm), three intensities (5, 10, and 20 mm h-1) and five application times (immediately after spraying herbicide, 6 h, 1, 7, and 14 days after spraying). In the second experiment, 20 mm of rainfall was applied at 10 mm h-1 in either 4 × 5 mm rainfall events over two days, 2 × 10 mm rainfall events over one day, or a single 20 mm rainfall event, with a no-rainfall control treatment. Bioassays were used to assess the herbicide activity/availability in the soil and remaining on the residue, using cucumber (Cucumis sativus L.) and Italian ryegrass (Lolium multiflorum Lam.) as indicator plants. At higher rainfall amounts, most of the herbicide leached from the stubble into the soil soon after application; more so with rain in one event rather than multiple events. However, the intensity of rainfall had no effect. Pyroxasulfone leached easily from the residue to the soil to potentially offer good weed control, prosulfocarb had an intermediary leaching effect, while only a small amount of trifluralin leached from stubble after rain. Therefore, in no-tillage situations with large amounts of crop residue present on the soil surface, herbicides that leach easily from the residue should be considered, like pyroxasulfone.

AB - No-tillage with stubble retention is a widely used cropping system for its conservation and yield benefits. The no-tillage farming system in southern Australia relies heavily on herbicides for weed management, but heavy crop residues may have a negative impact on the activity of pre-emergent herbicides applied. Any herbicide intercepted by the crop residue may not reach the soil surface without timely rainfall and may dissipate due to volatilisation, photo-degradation and/or microbial activity. Two experiments were carried out to investigate the interception of prosulfocarb, pyroxasulfone, and trifluralin herbicides by wheat residue and retention following simulated rainfall. For the first experiment, there were four simulated rainfall amounts (0, 5, 10, and 20 mm), three intensities (5, 10, and 20 mm h-1) and five application times (immediately after spraying herbicide, 6 h, 1, 7, and 14 days after spraying). In the second experiment, 20 mm of rainfall was applied at 10 mm h-1 in either 4 × 5 mm rainfall events over two days, 2 × 10 mm rainfall events over one day, or a single 20 mm rainfall event, with a no-rainfall control treatment. Bioassays were used to assess the herbicide activity/availability in the soil and remaining on the residue, using cucumber (Cucumis sativus L.) and Italian ryegrass (Lolium multiflorum Lam.) as indicator plants. At higher rainfall amounts, most of the herbicide leached from the stubble into the soil soon after application; more so with rain in one event rather than multiple events. However, the intensity of rainfall had no effect. Pyroxasulfone leached easily from the residue to the soil to potentially offer good weed control, prosulfocarb had an intermediary leaching effect, while only a small amount of trifluralin leached from stubble after rain. Therefore, in no-tillage situations with large amounts of crop residue present on the soil surface, herbicides that leach easily from the residue should be considered, like pyroxasulfone.

UR - http://www.scopus.com/inward/record.url?scp=85060915566&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0210219

DO - 10.1371/journal.pone.0210219

M3 - Article

VL - 14

JO - P L o S One

JF - P L o S One

SN - 1932-6203

IS - 2

M1 - e0210219

ER -