TY - JOUR
T1 - Radium 223-Mediated Zonal Cytotoxicity of Prostate Cancer in Bone
AU - Dondossola, Eleonora
AU - Casarin, Stefano
AU - Paindelli, Claudia
AU - De-Juan-Pardo, Elena M.
AU - Hutmacher, Dietmar W.
AU - Logothetis, Christopher J.
AU - Friedl, Peter
PY - 2019/10/1
Y1 - 2019/10/1
N2 - BACKGROUND: Bone-targeting radiotherapy with Radium-223 (Rad-223), a radioisotope emitting genotoxic alpha-radiation with limited tissue penetrance (∼100 µm), prolongs the survival of patients with metastatic prostate cancer (PCa). Confoundingly, the clinical response to Rad-223 is often followed by detrimental relapse and progression, and whether Rad-223 causes tumor-cell directed cytotoxicity in vivo remains unclear. We hypothesized that limited radiation penetrance in situ defines outcome. METHODS: We tested Rad-223 overall response by PC3 and C4-2B human PCa cell lines in mouse bones (n = 5-18 tibiae per group). Rad-223 efficacy at subcellular resolution was determined by intravital microscopy analysis of dual-color fluorescent PC3 cells (n = 3-4 mice per group) in tissue-engineered bone constructs. In vivo data were fed into an in silico model to predict Rad-223 effectiveness in lesions of different sizes (1-27, 306 initial cells; n = 10-100 simulations) and the predictions validated in vivo by treating PCa tumors of varying sizes in bones (n = 10-14 tibiae per group). Statistical tests were performed by two-sided Student t test or by one-way ANOVA followed by Tukey's post-hoc test. RESULTS: Rad-223 (385 kBq/kg) delayed the growth (means [SD]; comparison with control-treated mice) of PC3 (6.7 × 105[4.2 × 105] vs 2.8 × 106 [2.2 × 106], P = .01) and C4-2B tumors in bone (7.7 × 105 [4.0 × 105] vs 3.5 × 106 [1.3 × 106], P < .001). Cancer cell lethality in response to Rad-223 (385 kBq/kg) was profound but zonally confined along the bone interface compared with the more distant tumor core, which remained unperturbed (day 4; 13.1 [2.3%] apoptotic cells, 0-100 µm distance from bone vs 3.6 [0.2%], >300 µm distance; P = .01).In silico simulations predicted greater efficacy of Rad-223 on single-cell lesions (eradication rate: 88.0%) and minimal effects on larger tumors (no eradication, 16.2% growth reduction in tumors of 27 306 cells), as further confirmed in vivo for PC3 and C4-2B tumors. CONCLUSIONS: Micro-tumors showed severe growth delay or eradication in response to Rad-223, whereas macro-tumors persisted and expanded. The relative inefficacy in controlling large tumors points to application of Rad-223 in secondary prevention of early bone-metastatic disease and regimens co-targeting the tumor core.
AB - BACKGROUND: Bone-targeting radiotherapy with Radium-223 (Rad-223), a radioisotope emitting genotoxic alpha-radiation with limited tissue penetrance (∼100 µm), prolongs the survival of patients with metastatic prostate cancer (PCa). Confoundingly, the clinical response to Rad-223 is often followed by detrimental relapse and progression, and whether Rad-223 causes tumor-cell directed cytotoxicity in vivo remains unclear. We hypothesized that limited radiation penetrance in situ defines outcome. METHODS: We tested Rad-223 overall response by PC3 and C4-2B human PCa cell lines in mouse bones (n = 5-18 tibiae per group). Rad-223 efficacy at subcellular resolution was determined by intravital microscopy analysis of dual-color fluorescent PC3 cells (n = 3-4 mice per group) in tissue-engineered bone constructs. In vivo data were fed into an in silico model to predict Rad-223 effectiveness in lesions of different sizes (1-27, 306 initial cells; n = 10-100 simulations) and the predictions validated in vivo by treating PCa tumors of varying sizes in bones (n = 10-14 tibiae per group). Statistical tests were performed by two-sided Student t test or by one-way ANOVA followed by Tukey's post-hoc test. RESULTS: Rad-223 (385 kBq/kg) delayed the growth (means [SD]; comparison with control-treated mice) of PC3 (6.7 × 105[4.2 × 105] vs 2.8 × 106 [2.2 × 106], P = .01) and C4-2B tumors in bone (7.7 × 105 [4.0 × 105] vs 3.5 × 106 [1.3 × 106], P < .001). Cancer cell lethality in response to Rad-223 (385 kBq/kg) was profound but zonally confined along the bone interface compared with the more distant tumor core, which remained unperturbed (day 4; 13.1 [2.3%] apoptotic cells, 0-100 µm distance from bone vs 3.6 [0.2%], >300 µm distance; P = .01).In silico simulations predicted greater efficacy of Rad-223 on single-cell lesions (eradication rate: 88.0%) and minimal effects on larger tumors (no eradication, 16.2% growth reduction in tumors of 27 306 cells), as further confirmed in vivo for PC3 and C4-2B tumors. CONCLUSIONS: Micro-tumors showed severe growth delay or eradication in response to Rad-223, whereas macro-tumors persisted and expanded. The relative inefficacy in controlling large tumors points to application of Rad-223 in secondary prevention of early bone-metastatic disease and regimens co-targeting the tumor core.
UR - http://www.scopus.com/inward/record.url?scp=85071846627&partnerID=8YFLogxK
U2 - 10.1093/jnci/djz007
DO - 10.1093/jnci/djz007
M3 - Article
C2 - 30657953
AN - SCOPUS:85071846627
SN - 0027-8874
VL - 111
SP - 1042
EP - 1050
JO - Journal of the National Cancer Institute
JF - Journal of the National Cancer Institute
IS - 10
ER -