Quartz Rheology and Short-time-scale Crustal Instabilities

    Research output: Contribution to journalArticle

    12 Citations (Scopus)

    Abstract

    We present numerical results of thermal-mechanical feedback in crustal quartz rheology and contrast this behavior to the vastly different character of an olivine mantle. In the numerical experiments quartz is found to have a very strong tendency for short-time-scale instabilities, while our numerical experiments show that olivine has a decisive tendency for a stable thermally lubricated slip. At the same time, olivine can also go through a transitional period of creep bursts, which are physically caused by multiple interacting ductile faults at various length and time scales which collocate quickly into a major shear zone. Since olivine has this strong propensity to self organize in a large apparently stable fault system, it lacks the dynamics of interacting ductile faults evident in other minerals. Quartz behaves totally different and keeps its jerky slip behavior for prolonged deformation. An example is shown here in which a 30 x 50 km piece of a wet quarzitic crust is extended for about 2 Ma. The associated total displacement field clearly shows the unstable slipping events, which have a characteristic time frame of one to several years, In contrast, olivine is very stable and has a much longer time scale for thermal instability of 100 kyrs.
    Original languageEnglish
    Pages (from-to)1915-1932
    JournalPure and Applied Geophysics
    Volume163
    Issue number9
    DOIs
    Publication statusPublished - 2006

      Fingerprint

    Cite this