Quantitative mobility spectrum analysis (QMSA) in multi-layer semiconductor structures

    Research output: Contribution to journalArticlepeer-review

    19 Citations (Scopus)


    For modern semiconductor heterostructures containing multiple populations of distinct carrier species, conventional Halland resistivity data acquired at a single magnetic field provide far less information than measurements as a function of magneticfield. However, the extraction of reliable and accurate carrier densities and mobilities from the field-dependent datacan present a number of difficult challenges, which were never fully overcome by earlier methods such as the multi-carrier fit,the mobility spectrum analysis of Beck and Anderson, and the hybrid mixed-conduction analysis. More recently, in order toovercome the limitations of those methods, several research groups have contributed to development of the quantitative mobilityspectrum analysis (QMSA), which is now available as a commercial product. The algorithm is analogous to a fast Fouriertransform, in that it transforms from the magnetic field B domain to the mobility µ domain. QMSA converts thefield-dependent Hall and resistivity data into a visually-meaningful transformed output, comprising the conductivity densityof electrons and holes in the mobility domain. In this article, we apply QMSA to both synthetic and real experimental datathat are representative of modern semiconductor structures.
    Original languageEnglish
    Pages (from-to)347-352
    JournalOpto-Electronics Review
    Issue number4
    Publication statusPublished - 2004


    Dive into the research topics of 'Quantitative mobility spectrum analysis (QMSA) in multi-layer semiconductor structures'. Together they form a unique fingerprint.

    Cite this