Quantifying symmetric exchange in ultrathin ferromagnetic films with chirality

Tobias Böttcher, T. S. Suraj, Xiaoye Chen, Banibrato Sinha, Hui Ru Tan, Hang Khume Tan, Robert Laskowski, Burkard Hillebrands, Mikhail Kostylev, Khoong Hong Khoo, Anjan Soumyanarayanan, Philipp Pirro

Research output: Contribution to journalArticlepeer-review

Abstract

The symmetric (Heisenberg) exchange interaction is fundamental to magnetism and assumes critical importance in designing magnetic materials for novel emergent phenomena and device applications. However, quantifying exchange is extremely challenging for ultrathin magnetic films, as techniques and approximations reliably used for bulk materials are largely inapplicable in the two-dimensional limit. Here we present and contrast the measurement of exchange stiffness A by several methods on a series of five Co/Pt-based ultrathin (1-2 nm) films. We compare results from (a) spin-wave spectroscopy by Brillouin light scattering, (b) three analytical models describing the temperature dependence of magnetization obtained by magnetometry, (c) microscopic domain periodicity measurements and simulations, and (d) ab initio density functional theory calculations. While different methods present some qualitatively consistent trends across samples, we note, for any given sample, considerable differences (up to 5×) in the absolute values of A across the techniques, consistent with discrepancies of A reported in literature for nominally similar samples. We analyze possible sources of the discrepancies across various methods, notably including their relationship to the spin-wave dispersion, and the wave-vector ranges probed. We compare the strengths and limitations of the techniques, and outline directions for their future use in characterizing exchange interactions in ultrathin films.

Original languageEnglish
Article number094405
JournalPhysical Review B
Volume107
Issue number9
DOIs
Publication statusPublished - 1 Mar 2023

Fingerprint

Dive into the research topics of 'Quantifying symmetric exchange in ultrathin ferromagnetic films with chirality'. Together they form a unique fingerprint.

Cite this