Projects per year
Abstract
This review presents a critical and comprehensive overview of current experimental measurements of complete elastic constant tensors for molecular crystals. For a large fraction of these molecular crystals, detailed comparisons are made with elastic tensors obtained using the corrected small basis set Hartree–Fock method S-HF-3c, and these are shown to be competitive with many of those obtained from more sophisticated density functional theory plus dispersion (DFT-D) approaches. These detailed comparisons between S-HF-3c, experimental and DFT-D computed tensors make use of a novel rotation-invariant spherical harmonic description of the Young's modulus, and identify outliers among sets of independent experimental results. The result is a curated database of experimental elastic tensors for molecular crystals, which we hope will stimulate more extensive use of elastic tensor information—experimental and computational—in studies aimed at correlating mechanical properties of molecular crystals with their underlying crystal structure.
Original language | English |
---|---|
Article number | e202110716 |
Journal | Angewandte Chemie - International Edition |
Volume | 61 |
Issue number | 6 |
Early online date | 2021 |
DOIs | |
Publication status | Published - 1 Feb 2022 |
Fingerprint
Dive into the research topics of 'Quantifying Mechanical Properties of Molecular Crystals: A Critical Overview of Experimental Elastic Tensors'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Taming carbon dioxide: Molecular interactions in the solid state
Spackman, M. (Investigator 01), Koutsantonis, G. (Investigator 02) & Iversen, B. (Investigator 03)
ARC Australian Research Council
1/01/17 → 31/12/20
Project: Research
-
Host-Guest Interactions in the Solid State - Models for an Enhanced Understanding of Supramolecular Chemistry
Spackman, M. (Investigator 01), Koutsantonis, G. (Investigator 02) & Iversen, B. (Investigator 03)
ARC Australian Research Council
1/01/13 → 31/03/17
Project: Research