Provenance of the Ordovician–lower Silurian Tumblagooda Sandstone, Western Australia

Y.A. Kettanah, Arthur Mory, G.D. Wach, Michael Wingate

    Research output: Contribution to journalArticle

    8 Citations (Scopus)

    Abstract

    © 2015, Crown Copyright in the Commonwealth of Australia 2015 Geological Survey of Western Australia. Detrital zircon U–Pb ages and heavy mineral assemblages provide conflicting evidence of the provenance of the Ordovician–lower Silurian Tumblagooda Sandstone, a fluvial to shallow marine, red-bed succession over 2000 m thick, within the northern Perth and Southern Carnarvon basins in Western Australia. Tourmaline composition indicates a main provenance from interior continental terranes dominated by ‘Li-poor granitoids, pegmatites and aplites’ and ‘Ca-poor metapelites, metapsammites and quartz-tourmaline rocks,’ akin to the Yilgarn Craton to the east of outcrop of the Tumblagooda Sandstone. Other possible source areas include orogens mostly to the south but lack tourmaline analyses for comparison. Taking into account the lack of garnets—a conspicuous component of the adjacent Proterozoic Northampton Inlier—the limited zircon data are compatible with the Albany–Fraser and Pinjarra orogens along the southern and western margins of Australia and/or terranes in or adjacent to East Africa and/or Antarctica, as ultimate source regions with a minor contribution from the Yilgarn Craton, as with other Phanerozoic strata in Western Australia. Whereas the textural and mineralogical maturity of the sandstone could be explained by derivation from such regions, it is more likely that the source was relatively local and that the sediment passed through several phases of reworking. The main source of ilmenite and hematite, by comparison, may have been mafic–ultramafic rocks and/or banded iron formations within the Archean Yilgarn Craton to the east or the Pilbara Craton to the northeast, mobilised by acidic meteoric waters. Iron oxides forming the earliest cements may have been derived from the oxidation of detrital hematite and ilmenite grains concentrated along some bedding laminae or transported in solution from beyond the zone of deposition. Whereas the detrital iron oxides most likely come from the craton to the east of outcrop of the Tumblagooda Sandstone, the sand grains appear to have originally come from a relatively local orogenic source.
    Original languageEnglish
    Pages (from-to)817-830
    JournalAustralian Journal of Earth Sciences
    Volume62
    Issue number7
    DOIs
    Publication statusPublished - 2015

    Fingerprint

    Silurian
    provenance
    craton
    sandstone
    tourmaline
    ilmenite
    iron oxide
    hematite
    terrane
    outcrop
    zircon
    continental interior
    banded iron formation
    red bed
    Commonwealth of Nations
    metapelite
    heavy mineral
    meteoric water
    Phanerozoic
    reworking

    Cite this

    @article{05adbe9f93f4490e985b734eca951d7c,
    title = "Provenance of the Ordovician–lower Silurian Tumblagooda Sandstone, Western Australia",
    abstract = "{\circledC} 2015, Crown Copyright in the Commonwealth of Australia 2015 Geological Survey of Western Australia. Detrital zircon U–Pb ages and heavy mineral assemblages provide conflicting evidence of the provenance of the Ordovician–lower Silurian Tumblagooda Sandstone, a fluvial to shallow marine, red-bed succession over 2000 m thick, within the northern Perth and Southern Carnarvon basins in Western Australia. Tourmaline composition indicates a main provenance from interior continental terranes dominated by ‘Li-poor granitoids, pegmatites and aplites’ and ‘Ca-poor metapelites, metapsammites and quartz-tourmaline rocks,’ akin to the Yilgarn Craton to the east of outcrop of the Tumblagooda Sandstone. Other possible source areas include orogens mostly to the south but lack tourmaline analyses for comparison. Taking into account the lack of garnets—a conspicuous component of the adjacent Proterozoic Northampton Inlier—the limited zircon data are compatible with the Albany–Fraser and Pinjarra orogens along the southern and western margins of Australia and/or terranes in or adjacent to East Africa and/or Antarctica, as ultimate source regions with a minor contribution from the Yilgarn Craton, as with other Phanerozoic strata in Western Australia. Whereas the textural and mineralogical maturity of the sandstone could be explained by derivation from such regions, it is more likely that the source was relatively local and that the sediment passed through several phases of reworking. The main source of ilmenite and hematite, by comparison, may have been mafic–ultramafic rocks and/or banded iron formations within the Archean Yilgarn Craton to the east or the Pilbara Craton to the northeast, mobilised by acidic meteoric waters. Iron oxides forming the earliest cements may have been derived from the oxidation of detrital hematite and ilmenite grains concentrated along some bedding laminae or transported in solution from beyond the zone of deposition. Whereas the detrital iron oxides most likely come from the craton to the east of outcrop of the Tumblagooda Sandstone, the sand grains appear to have originally come from a relatively local orogenic source.",
    author = "Y.A. Kettanah and Arthur Mory and G.D. Wach and Michael Wingate",
    year = "2015",
    doi = "10.1080/08120099.2015.1117020",
    language = "English",
    volume = "62",
    pages = "817--830",
    journal = "Australian Journal of Earth Sciences",
    issn = "0812-0099",
    publisher = "Taylor & Francis",
    number = "7",

    }

    Provenance of the Ordovician–lower Silurian Tumblagooda Sandstone, Western Australia. / Kettanah, Y.A.; Mory, Arthur; Wach, G.D.; Wingate, Michael.

    In: Australian Journal of Earth Sciences, Vol. 62, No. 7, 2015, p. 817-830.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Provenance of the Ordovician–lower Silurian Tumblagooda Sandstone, Western Australia

    AU - Kettanah, Y.A.

    AU - Mory, Arthur

    AU - Wach, G.D.

    AU - Wingate, Michael

    PY - 2015

    Y1 - 2015

    N2 - © 2015, Crown Copyright in the Commonwealth of Australia 2015 Geological Survey of Western Australia. Detrital zircon U–Pb ages and heavy mineral assemblages provide conflicting evidence of the provenance of the Ordovician–lower Silurian Tumblagooda Sandstone, a fluvial to shallow marine, red-bed succession over 2000 m thick, within the northern Perth and Southern Carnarvon basins in Western Australia. Tourmaline composition indicates a main provenance from interior continental terranes dominated by ‘Li-poor granitoids, pegmatites and aplites’ and ‘Ca-poor metapelites, metapsammites and quartz-tourmaline rocks,’ akin to the Yilgarn Craton to the east of outcrop of the Tumblagooda Sandstone. Other possible source areas include orogens mostly to the south but lack tourmaline analyses for comparison. Taking into account the lack of garnets—a conspicuous component of the adjacent Proterozoic Northampton Inlier—the limited zircon data are compatible with the Albany–Fraser and Pinjarra orogens along the southern and western margins of Australia and/or terranes in or adjacent to East Africa and/or Antarctica, as ultimate source regions with a minor contribution from the Yilgarn Craton, as with other Phanerozoic strata in Western Australia. Whereas the textural and mineralogical maturity of the sandstone could be explained by derivation from such regions, it is more likely that the source was relatively local and that the sediment passed through several phases of reworking. The main source of ilmenite and hematite, by comparison, may have been mafic–ultramafic rocks and/or banded iron formations within the Archean Yilgarn Craton to the east or the Pilbara Craton to the northeast, mobilised by acidic meteoric waters. Iron oxides forming the earliest cements may have been derived from the oxidation of detrital hematite and ilmenite grains concentrated along some bedding laminae or transported in solution from beyond the zone of deposition. Whereas the detrital iron oxides most likely come from the craton to the east of outcrop of the Tumblagooda Sandstone, the sand grains appear to have originally come from a relatively local orogenic source.

    AB - © 2015, Crown Copyright in the Commonwealth of Australia 2015 Geological Survey of Western Australia. Detrital zircon U–Pb ages and heavy mineral assemblages provide conflicting evidence of the provenance of the Ordovician–lower Silurian Tumblagooda Sandstone, a fluvial to shallow marine, red-bed succession over 2000 m thick, within the northern Perth and Southern Carnarvon basins in Western Australia. Tourmaline composition indicates a main provenance from interior continental terranes dominated by ‘Li-poor granitoids, pegmatites and aplites’ and ‘Ca-poor metapelites, metapsammites and quartz-tourmaline rocks,’ akin to the Yilgarn Craton to the east of outcrop of the Tumblagooda Sandstone. Other possible source areas include orogens mostly to the south but lack tourmaline analyses for comparison. Taking into account the lack of garnets—a conspicuous component of the adjacent Proterozoic Northampton Inlier—the limited zircon data are compatible with the Albany–Fraser and Pinjarra orogens along the southern and western margins of Australia and/or terranes in or adjacent to East Africa and/or Antarctica, as ultimate source regions with a minor contribution from the Yilgarn Craton, as with other Phanerozoic strata in Western Australia. Whereas the textural and mineralogical maturity of the sandstone could be explained by derivation from such regions, it is more likely that the source was relatively local and that the sediment passed through several phases of reworking. The main source of ilmenite and hematite, by comparison, may have been mafic–ultramafic rocks and/or banded iron formations within the Archean Yilgarn Craton to the east or the Pilbara Craton to the northeast, mobilised by acidic meteoric waters. Iron oxides forming the earliest cements may have been derived from the oxidation of detrital hematite and ilmenite grains concentrated along some bedding laminae or transported in solution from beyond the zone of deposition. Whereas the detrital iron oxides most likely come from the craton to the east of outcrop of the Tumblagooda Sandstone, the sand grains appear to have originally come from a relatively local orogenic source.

    U2 - 10.1080/08120099.2015.1117020

    DO - 10.1080/08120099.2015.1117020

    M3 - Article

    VL - 62

    SP - 817

    EP - 830

    JO - Australian Journal of Earth Sciences

    JF - Australian Journal of Earth Sciences

    SN - 0812-0099

    IS - 7

    ER -