Protection from illegal fishing and shark recovery restructures mesopredatory fish communities on a coral reef

Conrad W. Speed, Matthew J. Rees, Katherine Cure, Brigit Vaughan, Mark G. Meekan

Research output: Contribution to journalArticle

Abstract

The recovery of communities of predatory fishes within a no-take marine reserve after the eradication of illegal fishing provides an opportunity to examine the role of sharks and other large-bodied mesopredatory fishes in structuring reef fish communities. We used baited remote underwater video stations to investigate whether an increase in sharks was associated with a change in structure of the mesopredatory fish community at Ashmore Reef, Western Australia. We found an almost fourfold increase in shark abundance in reef habitat from 0.64 hr−1 ± 0.15 SE in 2004, when Ashmore Reef was being fished illegally, to 2.45 hr−1 ± 0.37 in 2016, after eight years of full-time enforcement of the reserve. Shark recovery in reef habitat was accompanied by a two and a half-fold decline in the abundance of small mesopredatory fishes (≤50 cm TL) (14.00 hr−1 ± 3.79 to 5.6 hr−1 ± 1.20) and a concomitant increase in large mesopredatory fishes (≥100 cm TL) from 1.82 hr−1 ± 0.48 to 4.27 hr−1 ± 0.93. In contrast, near-reef habitats showed an increase in abundance of large mesopredatory fishes between years (2.00 hr−1 ± 0.65 to 4.56 hr−1 ± 1.11), although only smaller increases in sharks (0.67 hr−1 ± 0.25 to 1.22 hr−1 ± 0.34) and smaller mesopredatory fishes. Although the abundance of most mesopredatory groups increased with recovery from fishing, we suggest that the large decline of small mesopredatory fish in reef habitat was mostly due to higher predation pressure following the increase in sharks and large mesopredatory fishes. At the regional scale, the structure of fished communities at Ashmore Reef in 2004 resembled those of present day Scott Reefs, where fishing still continues today. In 2016, Ashmore fish communities resembled those of the Rowley Shoals, which have been protected from fishing for decades.

Original languageEnglish
JournalEcology and Evolution
DOIs
Publication statusPublished - 1 Jan 2019

Fingerprint

shark
sharks
coral reefs
coral reef
reefs
fishing
reef
fish
habitats
habitat
fish communities
Western Australia
marine park
community structure
predation
fold

Cite this

Speed, Conrad W. ; Rees, Matthew J. ; Cure, Katherine ; Vaughan, Brigit ; Meekan, Mark G. / Protection from illegal fishing and shark recovery restructures mesopredatory fish communities on a coral reef. In: Ecology and Evolution. 2019.
@article{edbc97709d134bf1b7e0aa4b836ab8ab,
title = "Protection from illegal fishing and shark recovery restructures mesopredatory fish communities on a coral reef",
abstract = "The recovery of communities of predatory fishes within a no-take marine reserve after the eradication of illegal fishing provides an opportunity to examine the role of sharks and other large-bodied mesopredatory fishes in structuring reef fish communities. We used baited remote underwater video stations to investigate whether an increase in sharks was associated with a change in structure of the mesopredatory fish community at Ashmore Reef, Western Australia. We found an almost fourfold increase in shark abundance in reef habitat from 0.64 hr−1 ± 0.15 SE in 2004, when Ashmore Reef was being fished illegally, to 2.45 hr−1 ± 0.37 in 2016, after eight years of full-time enforcement of the reserve. Shark recovery in reef habitat was accompanied by a two and a half-fold decline in the abundance of small mesopredatory fishes (≤50 cm TL) (14.00 hr−1 ± 3.79 to 5.6 hr−1 ± 1.20) and a concomitant increase in large mesopredatory fishes (≥100 cm TL) from 1.82 hr−1 ± 0.48 to 4.27 hr−1 ± 0.93. In contrast, near-reef habitats showed an increase in abundance of large mesopredatory fishes between years (2.00 hr−1 ± 0.65 to 4.56 hr−1 ± 1.11), although only smaller increases in sharks (0.67 hr−1 ± 0.25 to 1.22 hr−1 ± 0.34) and smaller mesopredatory fishes. Although the abundance of most mesopredatory groups increased with recovery from fishing, we suggest that the large decline of small mesopredatory fish in reef habitat was mostly due to higher predation pressure following the increase in sharks and large mesopredatory fishes. At the regional scale, the structure of fished communities at Ashmore Reef in 2004 resembled those of present day Scott Reefs, where fishing still continues today. In 2016, Ashmore fish communities resembled those of the Rowley Shoals, which have been protected from fishing for decades.",
keywords = "baited remote underwater video stations, competition, elasmobranchs, fishing pressure, marine reserve, predation, top-down effects",
author = "Speed, {Conrad W.} and Rees, {Matthew J.} and Katherine Cure and Brigit Vaughan and Meekan, {Mark G.}",
year = "2019",
month = "1",
day = "1",
doi = "10.1002/ece3.5575",
language = "English",
journal = "Ecology and Evolution",
issn = "2045-7758",
publisher = "John Wiley & Sons",

}

Protection from illegal fishing and shark recovery restructures mesopredatory fish communities on a coral reef. / Speed, Conrad W.; Rees, Matthew J.; Cure, Katherine; Vaughan, Brigit; Meekan, Mark G.

In: Ecology and Evolution, 01.01.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Protection from illegal fishing and shark recovery restructures mesopredatory fish communities on a coral reef

AU - Speed, Conrad W.

AU - Rees, Matthew J.

AU - Cure, Katherine

AU - Vaughan, Brigit

AU - Meekan, Mark G.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The recovery of communities of predatory fishes within a no-take marine reserve after the eradication of illegal fishing provides an opportunity to examine the role of sharks and other large-bodied mesopredatory fishes in structuring reef fish communities. We used baited remote underwater video stations to investigate whether an increase in sharks was associated with a change in structure of the mesopredatory fish community at Ashmore Reef, Western Australia. We found an almost fourfold increase in shark abundance in reef habitat from 0.64 hr−1 ± 0.15 SE in 2004, when Ashmore Reef was being fished illegally, to 2.45 hr−1 ± 0.37 in 2016, after eight years of full-time enforcement of the reserve. Shark recovery in reef habitat was accompanied by a two and a half-fold decline in the abundance of small mesopredatory fishes (≤50 cm TL) (14.00 hr−1 ± 3.79 to 5.6 hr−1 ± 1.20) and a concomitant increase in large mesopredatory fishes (≥100 cm TL) from 1.82 hr−1 ± 0.48 to 4.27 hr−1 ± 0.93. In contrast, near-reef habitats showed an increase in abundance of large mesopredatory fishes between years (2.00 hr−1 ± 0.65 to 4.56 hr−1 ± 1.11), although only smaller increases in sharks (0.67 hr−1 ± 0.25 to 1.22 hr−1 ± 0.34) and smaller mesopredatory fishes. Although the abundance of most mesopredatory groups increased with recovery from fishing, we suggest that the large decline of small mesopredatory fish in reef habitat was mostly due to higher predation pressure following the increase in sharks and large mesopredatory fishes. At the regional scale, the structure of fished communities at Ashmore Reef in 2004 resembled those of present day Scott Reefs, where fishing still continues today. In 2016, Ashmore fish communities resembled those of the Rowley Shoals, which have been protected from fishing for decades.

AB - The recovery of communities of predatory fishes within a no-take marine reserve after the eradication of illegal fishing provides an opportunity to examine the role of sharks and other large-bodied mesopredatory fishes in structuring reef fish communities. We used baited remote underwater video stations to investigate whether an increase in sharks was associated with a change in structure of the mesopredatory fish community at Ashmore Reef, Western Australia. We found an almost fourfold increase in shark abundance in reef habitat from 0.64 hr−1 ± 0.15 SE in 2004, when Ashmore Reef was being fished illegally, to 2.45 hr−1 ± 0.37 in 2016, after eight years of full-time enforcement of the reserve. Shark recovery in reef habitat was accompanied by a two and a half-fold decline in the abundance of small mesopredatory fishes (≤50 cm TL) (14.00 hr−1 ± 3.79 to 5.6 hr−1 ± 1.20) and a concomitant increase in large mesopredatory fishes (≥100 cm TL) from 1.82 hr−1 ± 0.48 to 4.27 hr−1 ± 0.93. In contrast, near-reef habitats showed an increase in abundance of large mesopredatory fishes between years (2.00 hr−1 ± 0.65 to 4.56 hr−1 ± 1.11), although only smaller increases in sharks (0.67 hr−1 ± 0.25 to 1.22 hr−1 ± 0.34) and smaller mesopredatory fishes. Although the abundance of most mesopredatory groups increased with recovery from fishing, we suggest that the large decline of small mesopredatory fish in reef habitat was mostly due to higher predation pressure following the increase in sharks and large mesopredatory fishes. At the regional scale, the structure of fished communities at Ashmore Reef in 2004 resembled those of present day Scott Reefs, where fishing still continues today. In 2016, Ashmore fish communities resembled those of the Rowley Shoals, which have been protected from fishing for decades.

KW - baited remote underwater video stations

KW - competition

KW - elasmobranchs

KW - fishing pressure

KW - marine reserve

KW - predation

KW - top-down effects

UR - http://www.scopus.com/inward/record.url?scp=85070925867&partnerID=8YFLogxK

U2 - 10.1002/ece3.5575

DO - 10.1002/ece3.5575

M3 - Article

JO - Ecology and Evolution

JF - Ecology and Evolution

SN - 2045-7758

ER -