Prostate external beam radiotherapy combined with high-dose-rate brachytherapy: dose-volume parameters from deformably-registered plans correlate with late gastrointestinal complications

Calyn Moulton, Mike House, V. Lye, C.I. Tang, M. Krawiec, David Joseph, J.W. Denham, Martin Ebert

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

© 2016 The Author(s).Background: Derivation of dose-volume correlated with toxicity for multi-modal treatments can be difficult due to the perceived need for voxel-by-voxel dose accumulation. With data available for a single-institution cohort with long follow-up, an investigation was undertaken into rectal dose-volume effects for gastrointestinal toxicities after deformably-registering each phase of a combined external beam radiotherapy (EBRT)/high-dose-rate (HDR) brachytherapy prostate treatment. Methods: One hundred and eighteen patients received EBRT in 23 fractions of 2 Gy and HDR (TG43 algorithm) in 3 fractions of 6.5 Gy. Results for the Late Effects of Normal Tissues - Subjective, Objective, Management and Analytic toxicity assessments were available with a median follow-up of 72 months. The HDR CT was deformably-registered to the EBRT CT. Doses were corrected for dose fractionation. Rectum dose-volume histogram (DVH) parameters were calculated in two ways. (1) Distribution-adding: parameters were calculated after the EBRT dose distribution was 3D-summed with the registered HDR dose distribution. (2) Parameter-adding: the EBRT DVH parameters were added to HDR DVH parameters. Logistic regressions and Mann-Whitney U-tests were used to correlate parameters with late peak toxicity (dichotomised at grade 1 or 2). Results: The 48-80, 40-63 and 49-55 Gy dose regions from distribution-adding were significantly correlated with rectal bleeding, urgency/tenesmus and stool frequency respectively. Additionally, urgency/tenesmus and anorectal pain were associated with the 25-26 Gy and 44-48 Gy dose regions from distribution-adding respectively. Parameter-adding also indicated the low-mid dose region was significantly correlated with stool frequency and proctitis. Conclusions: This study confirms significant dose-histogram effects for gastrointestinal toxicities after including deformable registration to combine phases of EBRT/HDR prostate cancer treatment. The findings from distribution-adding were in most cases consistent with those from parameter-adding. The mid-high dose range and near maximum doses were important for rectal bleeding. The distribution-adding mid-high dose range was also important for stool frequency and urgency/tenesmus. We encourage additional studies in a variety of institutions using a variety of dose accumulation methods with appropriate inter-fraction motion management. Trial registration: NCT NCT00193856. Retrospectively registered 12 September 2005.
Original languageEnglish
Pages (from-to)1-13
Number of pages13
JournalRadiation Oncology
Volume11
Issue number1
Publication statusPublished - 31 Oct 2016

Fingerprint

Brachytherapy
Prostate
Radiotherapy
Dose Fractionation
Hemorrhage
Proctitis
Nonparametric Statistics
Rectum
Prostatic Neoplasms
Therapeutics
Logistic Models
Pain

Cite this

@article{ec520ca477e14c308460f57162e8ec94,
title = "Prostate external beam radiotherapy combined with high-dose-rate brachytherapy: dose-volume parameters from deformably-registered plans correlate with late gastrointestinal complications",
abstract = "{\circledC} 2016 The Author(s).Background: Derivation of dose-volume correlated with toxicity for multi-modal treatments can be difficult due to the perceived need for voxel-by-voxel dose accumulation. With data available for a single-institution cohort with long follow-up, an investigation was undertaken into rectal dose-volume effects for gastrointestinal toxicities after deformably-registering each phase of a combined external beam radiotherapy (EBRT)/high-dose-rate (HDR) brachytherapy prostate treatment. Methods: One hundred and eighteen patients received EBRT in 23 fractions of 2 Gy and HDR (TG43 algorithm) in 3 fractions of 6.5 Gy. Results for the Late Effects of Normal Tissues - Subjective, Objective, Management and Analytic toxicity assessments were available with a median follow-up of 72 months. The HDR CT was deformably-registered to the EBRT CT. Doses were corrected for dose fractionation. Rectum dose-volume histogram (DVH) parameters were calculated in two ways. (1) Distribution-adding: parameters were calculated after the EBRT dose distribution was 3D-summed with the registered HDR dose distribution. (2) Parameter-adding: the EBRT DVH parameters were added to HDR DVH parameters. Logistic regressions and Mann-Whitney U-tests were used to correlate parameters with late peak toxicity (dichotomised at grade 1 or 2). Results: The 48-80, 40-63 and 49-55 Gy dose regions from distribution-adding were significantly correlated with rectal bleeding, urgency/tenesmus and stool frequency respectively. Additionally, urgency/tenesmus and anorectal pain were associated with the 25-26 Gy and 44-48 Gy dose regions from distribution-adding respectively. Parameter-adding also indicated the low-mid dose region was significantly correlated with stool frequency and proctitis. Conclusions: This study confirms significant dose-histogram effects for gastrointestinal toxicities after including deformable registration to combine phases of EBRT/HDR prostate cancer treatment. The findings from distribution-adding were in most cases consistent with those from parameter-adding. The mid-high dose range and near maximum doses were important for rectal bleeding. The distribution-adding mid-high dose range was also important for stool frequency and urgency/tenesmus. We encourage additional studies in a variety of institutions using a variety of dose accumulation methods with appropriate inter-fraction motion management. Trial registration: NCT NCT00193856. Retrospectively registered 12 September 2005.",
author = "Calyn Moulton and Mike House and V. Lye and C.I. Tang and M. Krawiec and David Joseph and J.W. Denham and Martin Ebert",
year = "2016",
month = "10",
day = "31",
language = "English",
volume = "11",
pages = "1--13",
journal = "Radiation Oncology",
issn = "1748-717X",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Prostate external beam radiotherapy combined with high-dose-rate brachytherapy

T2 - dose-volume parameters from deformably-registered plans correlate with late gastrointestinal complications

AU - Moulton, Calyn

AU - House, Mike

AU - Lye, V.

AU - Tang, C.I.

AU - Krawiec, M.

AU - Joseph, David

AU - Denham, J.W.

AU - Ebert, Martin

PY - 2016/10/31

Y1 - 2016/10/31

N2 - © 2016 The Author(s).Background: Derivation of dose-volume correlated with toxicity for multi-modal treatments can be difficult due to the perceived need for voxel-by-voxel dose accumulation. With data available for a single-institution cohort with long follow-up, an investigation was undertaken into rectal dose-volume effects for gastrointestinal toxicities after deformably-registering each phase of a combined external beam radiotherapy (EBRT)/high-dose-rate (HDR) brachytherapy prostate treatment. Methods: One hundred and eighteen patients received EBRT in 23 fractions of 2 Gy and HDR (TG43 algorithm) in 3 fractions of 6.5 Gy. Results for the Late Effects of Normal Tissues - Subjective, Objective, Management and Analytic toxicity assessments were available with a median follow-up of 72 months. The HDR CT was deformably-registered to the EBRT CT. Doses were corrected for dose fractionation. Rectum dose-volume histogram (DVH) parameters were calculated in two ways. (1) Distribution-adding: parameters were calculated after the EBRT dose distribution was 3D-summed with the registered HDR dose distribution. (2) Parameter-adding: the EBRT DVH parameters were added to HDR DVH parameters. Logistic regressions and Mann-Whitney U-tests were used to correlate parameters with late peak toxicity (dichotomised at grade 1 or 2). Results: The 48-80, 40-63 and 49-55 Gy dose regions from distribution-adding were significantly correlated with rectal bleeding, urgency/tenesmus and stool frequency respectively. Additionally, urgency/tenesmus and anorectal pain were associated with the 25-26 Gy and 44-48 Gy dose regions from distribution-adding respectively. Parameter-adding also indicated the low-mid dose region was significantly correlated with stool frequency and proctitis. Conclusions: This study confirms significant dose-histogram effects for gastrointestinal toxicities after including deformable registration to combine phases of EBRT/HDR prostate cancer treatment. The findings from distribution-adding were in most cases consistent with those from parameter-adding. The mid-high dose range and near maximum doses were important for rectal bleeding. The distribution-adding mid-high dose range was also important for stool frequency and urgency/tenesmus. We encourage additional studies in a variety of institutions using a variety of dose accumulation methods with appropriate inter-fraction motion management. Trial registration: NCT NCT00193856. Retrospectively registered 12 September 2005.

AB - © 2016 The Author(s).Background: Derivation of dose-volume correlated with toxicity for multi-modal treatments can be difficult due to the perceived need for voxel-by-voxel dose accumulation. With data available for a single-institution cohort with long follow-up, an investigation was undertaken into rectal dose-volume effects for gastrointestinal toxicities after deformably-registering each phase of a combined external beam radiotherapy (EBRT)/high-dose-rate (HDR) brachytherapy prostate treatment. Methods: One hundred and eighteen patients received EBRT in 23 fractions of 2 Gy and HDR (TG43 algorithm) in 3 fractions of 6.5 Gy. Results for the Late Effects of Normal Tissues - Subjective, Objective, Management and Analytic toxicity assessments were available with a median follow-up of 72 months. The HDR CT was deformably-registered to the EBRT CT. Doses were corrected for dose fractionation. Rectum dose-volume histogram (DVH) parameters were calculated in two ways. (1) Distribution-adding: parameters were calculated after the EBRT dose distribution was 3D-summed with the registered HDR dose distribution. (2) Parameter-adding: the EBRT DVH parameters were added to HDR DVH parameters. Logistic regressions and Mann-Whitney U-tests were used to correlate parameters with late peak toxicity (dichotomised at grade 1 or 2). Results: The 48-80, 40-63 and 49-55 Gy dose regions from distribution-adding were significantly correlated with rectal bleeding, urgency/tenesmus and stool frequency respectively. Additionally, urgency/tenesmus and anorectal pain were associated with the 25-26 Gy and 44-48 Gy dose regions from distribution-adding respectively. Parameter-adding also indicated the low-mid dose region was significantly correlated with stool frequency and proctitis. Conclusions: This study confirms significant dose-histogram effects for gastrointestinal toxicities after including deformable registration to combine phases of EBRT/HDR prostate cancer treatment. The findings from distribution-adding were in most cases consistent with those from parameter-adding. The mid-high dose range and near maximum doses were important for rectal bleeding. The distribution-adding mid-high dose range was also important for stool frequency and urgency/tenesmus. We encourage additional studies in a variety of institutions using a variety of dose accumulation methods with appropriate inter-fraction motion management. Trial registration: NCT NCT00193856. Retrospectively registered 12 September 2005.

M3 - Article

VL - 11

SP - 1

EP - 13

JO - Radiation Oncology

JF - Radiation Oncology

SN - 1748-717X

IS - 1

ER -