Abstract
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2to 20 deg2will require at least three detectors of sensitivity within a factor of ~ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
Original language | English |
---|---|
Article number | 1 |
Pages (from-to) | 1-39 |
Number of pages | 39 |
Journal | Living Reviews in Relativity |
Volume | 19 |
DOIs | |
Publication status | Published - 8 Feb 2016 |
Fingerprint
Dive into the research topics of 'Prospects for observing and localizing gravitational-wave transients with advanced LIGO and advanced virgo'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Living Reviews in Relativity, Vol. 19, 1, 08.02.2016, p. 1-39.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Prospects for observing and localizing gravitational-wave transients with advanced LIGO and advanced virgo
AU - LIGO Scientific Collaboration and Virgo Collaborations
AU - Abbott, B. P.
AU - Abbott, R.
AU - Abbott, T. D.
AU - Abernathy, M. R.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, C.
AU - Adams, T.
AU - Addesso, P.
AU - Adhikari, R. X.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Ain, A.
AU - Ajith, P.
AU - Allen, B.
AU - Allocca, A.
AU - Altin, P. A.
AU - Amariutei, D. V.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Arai, K.
AU - Araya, M. C.
AU - Arceneaux, C. C.
AU - Areeda, J. S.
AU - Arnaud, N.
AU - Arun, K. G.
AU - Ashton, G.
AU - Ast, M.
AU - Aston, S. M.
AU - Astone, P.
AU - Aufmuth, P.
AU - Aulbert, C.
AU - Babak, S.
AU - Baker, P. T.
AU - Baldaccini, F.
AU - Ballardin, G.
AU - Ballmer, S. W.
AU - Barayoga, J. C.
AU - Barclay, S. E.
AU - Barish, B. C.
AU - Barker, D.
AU - Barone, F.
AU - Barr, B.
AU - Barsotti, L.
AU - Barsuglia, M.
AU - Barta, D.
AU - Bartlett, J.
AU - Bartos, I.
AU - Bassiri, R.
AU - Basti, A.
AU - Batch, J. C.
AU - Baune, C.
AU - Bavigadda, V.
AU - Bazzan, M.
AU - Behnke, B.
AU - Bejger, M.
AU - Belczynski, C.
AU - Bell, A. S.
AU - Bell, C. J.
AU - Berger, B. K.
AU - Bergman, J.
AU - Bergmann, G.
AU - Berry, C. P.L.
AU - Bersanetti, D.
AU - Bertolini, A.
AU - Betzwieser, J.
AU - Bhagwat, S.
AU - Bhandare, R.
AU - Bilenko, I. A.
AU - Billingsley, G.
AU - Birch, J.
AU - Birney, R.
AU - Biscans, S.
AU - Bisht, A.
AU - Bitossi, M.
AU - Biwer, C.
AU - Bizouard, M. A.
AU - Blackburn, J. K.
AU - Blair, C. D.
AU - Blair, D.
AU - Blair, R. M.
AU - Bloemen, S.
AU - Bock, O.
AU - Bodiya, T. P.
AU - Boer, M.
AU - Bogaert, G.
AU - Bogan, C.
AU - Bohe, A.
AU - Bojtos, P.
AU - Bond, C.
AU - Bondu, F.
AU - Bonnand, R.
AU - Bork, R.
AU - Boschi, V.
AU - Bose, S.
AU - Bozzi, A.
AU - Bradaschia, C.
AU - Brady, P. R.
AU - Braginsky, V. B.
AU - Branchesi, M.
AU - Brau, J. E.
AU - Briant, T.
AU - Brillet, A.
AU - Brinkmann, M.
AU - Brisson, V.
AU - Brockill, P.
AU - Brooks, A. F.
AU - Brown, D. A.
AU - Brown, D. D.
AU - Brown, N. M.
AU - Buchanan, C. C.
AU - Buikema, A.
AU - Bulik, T.
AU - Bulten, H. J.
AU - Buonanno, A.
AU - Buskulic, D.
AU - Buy, C.
AU - Byer, R. L.
AU - Cadonati, L.
AU - Cagnoli, G.
AU - Cahillane, C.
AU - Calderón Bustillo, J.
AU - Callister, T.
AU - Calloni, E.
AU - Camp, J. B.
AU - Cannon, K. C.
AU - Cao, J.
AU - Capano, C. D.
AU - Capocasa, E.
AU - Carbognani, F.
AU - Caride, S.
AU - Casanueva Diaz, J.
AU - Casentini, C.
AU - Caudill, S.
AU - Cavaglià, M.
AU - Cavalier, F.
AU - Cavalieri, R.
AU - Cella, G.
AU - Cepeda, C.
AU - Cerboni Baiardi, L.
AU - Cerretani, G.
AU - Cesarini, E.
AU - Chakraborty, R.
AU - Chalermsongsak, T.
AU - Chamberlin, S. J.
AU - Chan, M.
AU - Chao, S.
AU - Charlton, P.
AU - Chassande-Mottin, E.
AU - Chen, H. Y.
AU - Chen, Y.
AU - Cheng, C.
AU - Chincarini, A.
AU - Chiummo, A.
AU - Cho, H. S.
AU - Cho, M.
AU - Chow, J. H.
AU - Christensen, N.
AU - Chu, Q.
AU - Chua, S.
AU - Chung, S.
AU - Ciani, G.
AU - Clara, F.
AU - Clark, J. A.
AU - Cleva, F.
AU - Coccia, E.
AU - Cohadon, P. F.
AU - Colla, A.
AU - Collette, C. G.
AU - Constancio, M.
AU - Conte, A.
AU - Conti, L.
AU - Cook, D.
AU - Corbitt, T. R.
AU - Cornish, N.
AU - Corsi, A.
AU - Cortese, S.
AU - Costa, C. A.
AU - Coughlin, M. W.
AU - Coughlin, S. B.
AU - Coulon, J. P.
AU - Countryman, S. T.
AU - Couvares, P.
AU - Coward, D. M.
AU - Cowart, M. J.
AU - Coyne, D. C.
AU - Coyne, R.
AU - Craig, K.
AU - Creighton, J. D.E.
AU - Cripe, J.
AU - Crowder, S. G.
AU - Cumming, A.
AU - Cunningham, L.
AU - Cuoco, E.
AU - Dal Canton, T.
AU - Danilishin, S. L.
AU - D’antonio, S.
AU - Danzmann, K.
AU - Darman, N. S.
AU - Dattilo, V.
AU - Dave, I.
AU - Daveloza, H. P.
AU - Davier, M.
AU - Davies, G. S.
AU - Daw, E. J.
AU - Day, R.
AU - Debra, D.
AU - Debreczeni, G.
AU - Degallaix, J.
AU - De Laurentis, M.
AU - Deléglise, S.
AU - Del Pozzo, W.
AU - Denker, T.
AU - Dent, T.
AU - Dereli, H.
AU - Dergachev, V.
AU - Derosa, R.
AU - De Rosa, R.
AU - Desalvo, R.
AU - Dhurandhar, S.
AU - Díaz, M. C.
AU - Di Fiore, L.
AU - Di Giovanni, M.
AU - Di Lieto, A.
AU - Di Palma, I.
AU - Di Virgilio, A.
AU - Dojcinoski, G.
AU - Dolique, V.
AU - Donovan, F.
AU - Dooley, K. L.
AU - Doravari, S.
AU - Douglas, R.
AU - Downes, T. P.
AU - Drago, M.
AU - Drever, R. W.P.
AU - Driggers, J. C.
AU - Du, Z.
AU - Ducrot, M.
AU - Dwyer, S. E.
AU - Edo, T. B.
AU - Edwards, M. C.
AU - Gendre, B.
AU - Ju, L.
AU - van Heijningen, J. V.
AU - Zhao, C.
AU - Zhu, X. J.
N1 - Funding Information: The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economía y Competitividad, the Conselleria d’Economia i Competitivitat and Conselleria d’Educació, Cultura i Universitats of the Govern de les Illes Balears, the National Science Centre of Poland, the FOCUS Programme of Foundation for Polish Science, the European Union, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, the Brazilian Ministry of Science, Technology, and Innovation, the Research Corporation, Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. Publisher Copyright: © The Author(s).
PY - 2016/2/8
Y1 - 2016/2/8
N2 - We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2to 20 deg2will require at least three detectors of sensitivity within a factor of ~ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
AB - We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2to 20 deg2will require at least three detectors of sensitivity within a factor of ~ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.
KW - Data analysis
KW - Electromagnetic counterparts
KW - Gravitational waves
KW - Gravitational-wave detectors
UR - http://www.scopus.com/inward/record.url?scp=84959257630&partnerID=8YFLogxK
U2 - 10.1007/lrr-2016-1
DO - 10.1007/lrr-2016-1
M3 - Article
C2 - 28179853
SN - 1433-8351
VL - 19
SP - 1
EP - 39
JO - Living Reviews in Relativity
JF - Living Reviews in Relativity
M1 - 1
ER -