Properties of the Binary Neutron Star Merger GW170817

LIGO Scientific Collaboration and Virgo Collaboration

Research output: Contribution to journalArticle

68 Citations (Scopus)

Abstract

On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M when allowing for large component spins, and to lie between 1.16 and 1.60 M (with a total mass 2.73-0.01+0.04 M) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300-230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.

Original languageEnglish
Article number011001
JournalPhysical Review X
Volume9
Issue number1
DOIs
Publication statusPublished - 2 Jan 2019

Fingerprint

binary stars
neutron stars
gravitational waves
LIGO (observatory)
sky
observatories
equations of state
flux density
electromagnetism
galaxies
intervals
detectors
estimates

Cite this

LIGO Scientific Collaboration and Virgo Collaboration (2019). Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 9(1), [011001]. https://doi.org/10.1103/PhysRevX.9.011001
LIGO Scientific Collaboration and Virgo Collaboration. / Properties of the Binary Neutron Star Merger GW170817. In: Physical Review X. 2019 ; Vol. 9, No. 1.
@article{f4a25214c4064a6997d76eed5a53bb66,
title = "Properties of the Binary Neutron Star Merger GW170817",
abstract = "On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90{\%} credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M when allowing for large component spins, and to lie between 1.16 and 1.60 M (with a total mass 2.73-0.01+0.04 M) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300-230+420 (using a 90{\%} highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90{\%} credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.",
author = "{LIGO Scientific Collaboration and Virgo Collaboration} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and B. Agarwal and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and B. Allen and G. Allen and A. Allocca and Aloy, {M. A.} and Altin, {P. A.} and A. Amato and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and Angelova, {S. V.} and S. Antier and S. Appert and K. Arai and Araya, {M. C.} and Areeda, {J. S.} and M. Ar{\`e}ne and N. Arnaud and Arun, {K. G.} and S. Ascenzi and G. Ashton and M. Ast and Aston, {S. M.} and P. Astone and Atallah, {D. V.} and F. Aubin and P. Aufmuth and C. Aulbert and K. Aultoneal and C. Austin and A. Avila-Alvarez and S. Babak and P. Bacon and F. Badaracco and Bader, {M. K.M.} and S. Bae and Baker, {P. T.} and F. Baldaccini and G. Ballardin and Ballmer, {S. W.} and S. Banagiri and Barayoga, {J. C.} and Barclay, {S. E.} and Barish, {B. C.} and D. Barker and K. Barkett and S. Barnum and F. Barone and B. Barr and L. Barsotti and M. Barsuglia and D. Barta and J. Bartlett and I. Bartos and R. Bassiri and A. Basti and Batch, {J. C.} and M. Bawaj and Bayley, {J. C.} and M. Bazzan and B. B{\'e}csy and C. Beer and M. Bejger and I. Belahcene and Bell, {A. S.} and D. Beniwal and M. Bensch and Berger, {B. K.} and G. Bergmann and S. Bernuzzi and Bero, {J. J.} and Berry, {C. P.L.} and D. Bersanetti and A. Bertolini and J. Betzwieser and R. Bhandare and Bilenko, {I. A.} and Bilgili, {S. A.} and G. Billingsley and Billman, {C. R.} and J. Birch and R. Birney and O. Birnholtz and S. Biscans and S. Biscoveanu and A. Bisht and M. Bitossi and Bizouard, {M. A.} and Blackburn, {J. K.} and J. Blackman and Blair, {C. D.} and Blair, {D. G.} and Blair, {R. M.} and S. Bloemen and O. Bock and N. Bode and M. Boer and Y. Boetzel and G. Bogaert and A. Bohe and F. Bondu and E. Bonilla and R. Bonnand and P. Booker and Boom, {B. A.} and Booth, {C. D.} and R. Bork and V. Boschi and S. Bose and K. Bossie and V. Bossilkov and J. Bosveld and Y. Bouffanais and A. Bozzi and C. Bradaschia and Brady, {P. R.} and A. Bramley and M. Branchesi and Brau, {J. E.} and T. Briant and F. Brighenti and A. Brillet and M. Brinkmann and V. Brisson and P. Brockill and Brooks, {A. F.} and Brown, {D. D.} and S. Brunett and Buchanan, {C. C.} and A. Buikema and T. Bulik and Bulten, {H. J.} and A. Buonanno and D. Buskulic and C. Buy and Byer, {R. L.} and M. Cabero and L. Cadonati and G. Cagnoli and C. Cahillane and Bustillo, {J. Calder{\'o}n} and Callister, {T. A.} and E. Calloni and Camp, {J. B.} and M. Canepa and P. Canizares and Cannon, {K. C.} and H. Cao and J. Cao and Capano, {C. D.} and E. Capocasa and F. Carbognani and S. Caride and Carney, {M. F.} and G. Carullo and Diaz, {J. Casanueva} and C. Casentini and S. Caudill and M. Cavagli{\`a} and F. Cavalier and R. Cavalieri and G. Cella and Cepeda, {C. B.} and P. Cerd{\'a}-Dur{\'a}n and G. Cerretani and E. Cesarini and O. Chaibi and Chamberlin, {S. J.} and M. Chan and S. Chao and P. Charlton and E. Chase and E. Chassande-Mottin and D. Chatterjee and K. Chatziioannou and Cheeseboro, {B. D.} and Chen, {H. Y.} and X. Chen and Y. Chen and Cheng, {H. P.} and Chia, {H. Y.} and A. Chincarini and A. Chiummo and T. Chmiel and Cho, {H. S.} and M. Cho and Chow, {J. H.} and N. Christensen and Q. Chu and Chua, {A. J.K.} and S. Chua and Chung, {K. W.} and S. Chung and G. Ciani and Ciobanu, {A. A.} and R. Ciolfi and F. Cipriano and Cirelli, {C. E.} and A. Cirone and F. Clara and Clark, {J. A.} and P. Clearwater and F. Cleva and C. Cocchieri and E. Coccia and Cohadon, {P. F.} and D. Cohen and A. Colla and Collette, {C. G.} and C. Collins and Cominsky, {L. R.} and M. Constancio and L. Conti and Cooper, {S. J.} and P. Corban and Corbitt, {T. R.} and I. Cordero-Carri{\'o}n and Corley, {K. R.} and N. Cornish and A. Corsi and S. Cortese and Costa, {C. A.} and R. Cotesta and Coward, {D. M.} and Danilishin, {S. L.} and Howell, {E. J.} and McCann, {J. J.} and Page, {M. A.} and Slaven-Blair, {T. J.} and {Van Heijningen}, {J. V.} and C. Zhao",
year = "2019",
month = "1",
day = "2",
doi = "10.1103/PhysRevX.9.011001",
language = "English",
volume = "9",
journal = "Physical Review X",
issn = "2160-3308",
publisher = "American Physical Society",
number = "1",

}

LIGO Scientific Collaboration and Virgo Collaboration 2019, 'Properties of the Binary Neutron Star Merger GW170817' Physical Review X, vol. 9, no. 1, 011001. https://doi.org/10.1103/PhysRevX.9.011001

Properties of the Binary Neutron Star Merger GW170817. / LIGO Scientific Collaboration and Virgo Collaboration.

In: Physical Review X, Vol. 9, No. 1, 011001, 02.01.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Properties of the Binary Neutron Star Merger GW170817

AU - LIGO Scientific Collaboration and Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agarwal, B.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, B.

AU - Allen, G.

AU - Allocca, A.

AU - Aloy, M. A.

AU - Altin, P. A.

AU - Amato, A.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Angelova, S. V.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arène, M.

AU - Arnaud, N.

AU - Arun, K. G.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Ast, M.

AU - Aston, S. M.

AU - Astone, P.

AU - Atallah, D. V.

AU - Aubin, F.

AU - Aufmuth, P.

AU - Aulbert, C.

AU - Aultoneal, K.

AU - Austin, C.

AU - Avila-Alvarez, A.

AU - Babak, S.

AU - Bacon, P.

AU - Badaracco, F.

AU - Bader, M. K.M.

AU - Bae, S.

AU - Baker, P. T.

AU - Baldaccini, F.

AU - Ballardin, G.

AU - Ballmer, S. W.

AU - Banagiri, S.

AU - Barayoga, J. C.

AU - Barclay, S. E.

AU - Barish, B. C.

AU - Barker, D.

AU - Barkett, K.

AU - Barnum, S.

AU - Barone, F.

AU - Barr, B.

AU - Barsotti, L.

AU - Barsuglia, M.

AU - Barta, D.

AU - Bartlett, J.

AU - Bartos, I.

AU - Bassiri, R.

AU - Basti, A.

AU - Batch, J. C.

AU - Bawaj, M.

AU - Bayley, J. C.

AU - Bazzan, M.

AU - Bécsy, B.

AU - Beer, C.

AU - Bejger, M.

AU - Belahcene, I.

AU - Bell, A. S.

AU - Beniwal, D.

AU - Bensch, M.

AU - Berger, B. K.

AU - Bergmann, G.

AU - Bernuzzi, S.

AU - Bero, J. J.

AU - Berry, C. P.L.

AU - Bersanetti, D.

AU - Bertolini, A.

AU - Betzwieser, J.

AU - Bhandare, R.

AU - Bilenko, I. A.

AU - Bilgili, S. A.

AU - Billingsley, G.

AU - Billman, C. R.

AU - Birch, J.

AU - Birney, R.

AU - Birnholtz, O.

AU - Biscans, S.

AU - Biscoveanu, S.

AU - Bisht, A.

AU - Bitossi, M.

AU - Bizouard, M. A.

AU - Blackburn, J. K.

AU - Blackman, J.

AU - Blair, C. D.

AU - Blair, D. G.

AU - Blair, R. M.

AU - Bloemen, S.

AU - Bock, O.

AU - Bode, N.

AU - Boer, M.

AU - Boetzel, Y.

AU - Bogaert, G.

AU - Bohe, A.

AU - Bondu, F.

AU - Bonilla, E.

AU - Bonnand, R.

AU - Booker, P.

AU - Boom, B. A.

AU - Booth, C. D.

AU - Bork, R.

AU - Boschi, V.

AU - Bose, S.

AU - Bossie, K.

AU - Bossilkov, V.

AU - Bosveld, J.

AU - Bouffanais, Y.

AU - Bozzi, A.

AU - Bradaschia, C.

AU - Brady, P. R.

AU - Bramley, A.

AU - Branchesi, M.

AU - Brau, J. E.

AU - Briant, T.

AU - Brighenti, F.

AU - Brillet, A.

AU - Brinkmann, M.

AU - Brisson, V.

AU - Brockill, P.

AU - Brooks, A. F.

AU - Brown, D. D.

AU - Brunett, S.

AU - Buchanan, C. C.

AU - Buikema, A.

AU - Bulik, T.

AU - Bulten, H. J.

AU - Buonanno, A.

AU - Buskulic, D.

AU - Buy, C.

AU - Byer, R. L.

AU - Cabero, M.

AU - Cadonati, L.

AU - Cagnoli, G.

AU - Cahillane, C.

AU - Bustillo, J. Calderón

AU - Callister, T. A.

AU - Calloni, E.

AU - Camp, J. B.

AU - Canepa, M.

AU - Canizares, P.

AU - Cannon, K. C.

AU - Cao, H.

AU - Cao, J.

AU - Capano, C. D.

AU - Capocasa, E.

AU - Carbognani, F.

AU - Caride, S.

AU - Carney, M. F.

AU - Carullo, G.

AU - Diaz, J. Casanueva

AU - Casentini, C.

AU - Caudill, S.

AU - Cavaglià, M.

AU - Cavalier, F.

AU - Cavalieri, R.

AU - Cella, G.

AU - Cepeda, C. B.

AU - Cerdá-Durán, P.

AU - Cerretani, G.

AU - Cesarini, E.

AU - Chaibi, O.

AU - Chamberlin, S. J.

AU - Chan, M.

AU - Chao, S.

AU - Charlton, P.

AU - Chase, E.

AU - Chassande-Mottin, E.

AU - Chatterjee, D.

AU - Chatziioannou, K.

AU - Cheeseboro, B. D.

AU - Chen, H. Y.

AU - Chen, X.

AU - Chen, Y.

AU - Cheng, H. P.

AU - Chia, H. Y.

AU - Chincarini, A.

AU - Chiummo, A.

AU - Chmiel, T.

AU - Cho, H. S.

AU - Cho, M.

AU - Chow, J. H.

AU - Christensen, N.

AU - Chu, Q.

AU - Chua, A. J.K.

AU - Chua, S.

AU - Chung, K. W.

AU - Chung, S.

AU - Ciani, G.

AU - Ciobanu, A. A.

AU - Ciolfi, R.

AU - Cipriano, F.

AU - Cirelli, C. E.

AU - Cirone, A.

AU - Clara, F.

AU - Clark, J. A.

AU - Clearwater, P.

AU - Cleva, F.

AU - Cocchieri, C.

AU - Coccia, E.

AU - Cohadon, P. F.

AU - Cohen, D.

AU - Colla, A.

AU - Collette, C. G.

AU - Collins, C.

AU - Cominsky, L. R.

AU - Constancio, M.

AU - Conti, L.

AU - Cooper, S. J.

AU - Corban, P.

AU - Corbitt, T. R.

AU - Cordero-Carrión, I.

AU - Corley, K. R.

AU - Cornish, N.

AU - Corsi, A.

AU - Cortese, S.

AU - Costa, C. A.

AU - Cotesta, R.

AU - Coward, D. M.

AU - Danilishin, S. L.

AU - Howell, E. J.

AU - McCann, J. J.

AU - Page, M. A.

AU - Slaven-Blair, T. J.

AU - Van Heijningen, J. V.

AU - Zhao, C.

PY - 2019/1/2

Y1 - 2019/1/2

N2 - On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M when allowing for large component spins, and to lie between 1.16 and 1.60 M (with a total mass 2.73-0.01+0.04 M) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300-230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.

AB - On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M when allowing for large component spins, and to lie between 1.16 and 1.60 M (with a total mass 2.73-0.01+0.04 M) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300-230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal.

UR - http://www.scopus.com/inward/record.url?scp=85061618892&partnerID=8YFLogxK

U2 - 10.1103/PhysRevX.9.011001

DO - 10.1103/PhysRevX.9.011001

M3 - Article

VL - 9

JO - Physical Review X

JF - Physical Review X

SN - 2160-3308

IS - 1

M1 - 011001

ER -

LIGO Scientific Collaboration and Virgo Collaboration. Properties of the Binary Neutron Star Merger GW170817. Physical Review X. 2019 Jan 2;9(1). 011001. https://doi.org/10.1103/PhysRevX.9.011001