Properties of rehabilitated coalmine soils at Collie

Bingah Astuti Hardiputra

Research output: ThesisMaster's Thesis

281 Downloads (Pure)

Abstract

[Truncated abstract] Many soil properties are involved in supporting the growth of plants and in limiting soil degradation. The present study was carried out to provide a basis for minimising environmental impact by providing a firm understanding of the soil properties that affect plant growth for soils developed from mining waste from the Wesfarmers Premier coalmine at Collie. The purpose of this study was to provide an understanding of the soil materials and to identify the potential interactions between soil properties and plants for soils developed on coalmine materials at the Premier mine, Collie. This research was to identify the nature of the manmade soils so as to determine if soil forming processes are active, to determine soil acidity including pH buffering capacity and the lime requirement of soils, to measure water retention characteristics and soil available water for plant growth, to relate soil properties to possible effects on plant growth, and to identify management strategies to improve soil conditions and overcome plant growth constraints. Seventy-seven manmade horizons from pits in 18 constructed soils, ranging from 9 to 21-years old, were analyzed throughout this study. These samples are classified based on soil depth, layer (topsoil and subsoil), and age of soil since rehabilitation. The methods for doing most of the analyses follow the Australian Soil and Land Survey handbook by Rayment and Higginson (1992). The results are presented quantitatively and soil properties are compared to provide information on pedogenic processes, the extent of soil development, the ability of the soils to resist degradation and to provide an indication of soil parent materials
Original languageEnglish
QualificationMasters
Publication statusUnpublished - 2004

Fingerprint

Dive into the research topics of 'Properties of rehabilitated coalmine soils at Collie'. Together they form a unique fingerprint.

Cite this