TY - JOUR
T1 - Properties of purified CYP2R1 in a reconstituted membrane environment and its 25-hydroxylation of 20-hydroxyvitamin D3
AU - Cheng, Chloe Y.S.
AU - Kim, Tae Kang
AU - Jeayeng, Saowanee
AU - Slominski, Andrzej T.
AU - Tuckey, Robert C.
PY - 2018/3/1
Y1 - 2018/3/1
N2 - Recent studies indicate that CYP2R1 is the major 25-hydroxylase catalyzing the first step in vitamin D activation. Since the catalytic properties of CYP2R1 have been poorly studied to date and it is a membrane protein, we examined the purified enzyme in a membrane environment. CYP2R1 was expressed in E. coli and purified by nickel affinity- and hydrophobic interaction-chromatography and assayed in a reconstituted membrane system comprising phospholipid vesicles plus purified human NADPH-P450 oxidoreductase. CYP2R1 converted vitamin D3 in the vesicle membrane to 25-hydroxyvitamin D3 [25(OH)D3] with good adherence to Michaelis-Menten kinetics. The kinetic parameters for 25-hydroxylation of vitamin D3 by the two major vitamin D 25-hydroxylases, CYP2R1 and CYP27A1, were examined in vesicles under identical conditions. CYP2R1 displayed a slightly lower kcat than CYP27A1 but a much lower Km for vitamin D3, and thus an overall 17-fold higher catalytic efficiency (kcat/Km), consistent with CYP2R1 being the major vitamin D 25-hydroxylase. 20-Hydroxyvitamin D3 [20(OH)D3], the main product of vitamin D3 activation by an alternative pathway catalyzed by CYP11A1, was metabolized by CYP2R1 to 20,25-dihydroxyvitamin D3 [20,25(OH)2D3], with catalytic efficiency similar to that for the 25-hydroxylation of vitamin D3. 20,25(OH)2D3 retained full, or somewhat enhanced activity compared to the parent 20(OH)D3 for the inhibition of the proliferation of melanocytes and dermal fibroblasts, with a potency comparable to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The 20,25(OH)2D3 was also able to act as an inverse agonist on retinoic acid-related orphan receptor α, like its parent 20(OH)D3. Thus, the major findings of this study are that CYP2R1 can metabolize substrates in a membrane environment, the enzyme displays higher catalytic efficiency than CYP27A1 for the 25-hydroxylation of vitamin D, it efficiently hydroxylates 20(OH)D3 at C25 and this product retains the biological activity of the parent compound.
AB - Recent studies indicate that CYP2R1 is the major 25-hydroxylase catalyzing the first step in vitamin D activation. Since the catalytic properties of CYP2R1 have been poorly studied to date and it is a membrane protein, we examined the purified enzyme in a membrane environment. CYP2R1 was expressed in E. coli and purified by nickel affinity- and hydrophobic interaction-chromatography and assayed in a reconstituted membrane system comprising phospholipid vesicles plus purified human NADPH-P450 oxidoreductase. CYP2R1 converted vitamin D3 in the vesicle membrane to 25-hydroxyvitamin D3 [25(OH)D3] with good adherence to Michaelis-Menten kinetics. The kinetic parameters for 25-hydroxylation of vitamin D3 by the two major vitamin D 25-hydroxylases, CYP2R1 and CYP27A1, were examined in vesicles under identical conditions. CYP2R1 displayed a slightly lower kcat than CYP27A1 but a much lower Km for vitamin D3, and thus an overall 17-fold higher catalytic efficiency (kcat/Km), consistent with CYP2R1 being the major vitamin D 25-hydroxylase. 20-Hydroxyvitamin D3 [20(OH)D3], the main product of vitamin D3 activation by an alternative pathway catalyzed by CYP11A1, was metabolized by CYP2R1 to 20,25-dihydroxyvitamin D3 [20,25(OH)2D3], with catalytic efficiency similar to that for the 25-hydroxylation of vitamin D3. 20,25(OH)2D3 retained full, or somewhat enhanced activity compared to the parent 20(OH)D3 for the inhibition of the proliferation of melanocytes and dermal fibroblasts, with a potency comparable to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. The 20,25(OH)2D3 was also able to act as an inverse agonist on retinoic acid-related orphan receptor α, like its parent 20(OH)D3. Thus, the major findings of this study are that CYP2R1 can metabolize substrates in a membrane environment, the enzyme displays higher catalytic efficiency than CYP27A1 for the 25-hydroxylation of vitamin D, it efficiently hydroxylates 20(OH)D3 at C25 and this product retains the biological activity of the parent compound.
KW - 25-hydroxylase
KW - CYP2R1
KW - Phospholipid vesicles
KW - Vitamin D3
UR - http://www.scopus.com/inward/record.url?scp=85027251396&partnerID=8YFLogxK
U2 - 10.1016/j.jsbmb.2017.07.011
DO - 10.1016/j.jsbmb.2017.07.011
M3 - Article
C2 - 28716760
AN - SCOPUS:85027251396
SN - 0960-0760
VL - 177
SP - 59
EP - 69
JO - Journal of Steroid Biochemistry and Molecular Biology
JF - Journal of Steroid Biochemistry and Molecular Biology
ER -