TY - JOUR
T1 - Progress in gene editing tools, implications and success in plants
T2 - a review
AU - Bhuyan, Suman Jyoti
AU - Kumar, Manoj
AU - Ramrao Devde, Pandurang
AU - Rai, Avinash Chandra
AU - Mishra, Amit Kumar
AU - Singh, Prashant Kumar
AU - Siddique, Kadambot H.M.
PY - 2023
Y1 - 2023
N2 - Genetic modifications are made through diverse mutagenesis techniques for crop improvement programs. Among these mutagenesis tools, the traditional methods involve chemical and radiation-induced mutagenesis, resulting in off-target and unintended mutations in the genome. However, recent advances have introduced site-directed nucleases (SDNs) for gene editing, significantly reducing off-target changes in the genome compared to induced mutagenesis and naturally occurring mutations in breeding populations. SDNs have revolutionized genetic engineering, enabling precise gene editing in recent decades. One widely used method, homology-directed repair (HDR), has been effective for accurate base substitution and gene alterations in some plant species. However, its application has been limited due to the inefficiency of HDR in plant cells and the prevalence of the error-prone repair pathway known as non-homologous end joining (NHEJ). The discovery of CRISPR-Cas has been a game-changer in this field. This system induces mutations by creating double-strand breaks (DSBs) in the genome and repairing them through associated repair pathways like NHEJ. As a result, the CRISPR-Cas system has been extensively used to transform plants for gene function analysis and to enhance desirable traits. Researchers have made significant progress in genetic engineering in recent years, particularly in understanding the CRISPR-Cas mechanism. This has led to various CRISPR-Cas variants, including CRISPR-Cas13, CRISPR interference, CRISPR activation, base editors, primes editors, and CRASPASE, a new CRISPR-Cas system for genetic engineering that cleaves proteins. Moreover, gene editing technologies like the prime editor and base editor approaches offer excellent opportunities for plant genome engineering. These cutting-edge tools have opened up new avenues for rapidly manipulating plant genomes. This review article provides a comprehensive overview of the current state of plant genetic engineering, focusing on recently developed tools for gene alteration and their potential applications in plant research.
AB - Genetic modifications are made through diverse mutagenesis techniques for crop improvement programs. Among these mutagenesis tools, the traditional methods involve chemical and radiation-induced mutagenesis, resulting in off-target and unintended mutations in the genome. However, recent advances have introduced site-directed nucleases (SDNs) for gene editing, significantly reducing off-target changes in the genome compared to induced mutagenesis and naturally occurring mutations in breeding populations. SDNs have revolutionized genetic engineering, enabling precise gene editing in recent decades. One widely used method, homology-directed repair (HDR), has been effective for accurate base substitution and gene alterations in some plant species. However, its application has been limited due to the inefficiency of HDR in plant cells and the prevalence of the error-prone repair pathway known as non-homologous end joining (NHEJ). The discovery of CRISPR-Cas has been a game-changer in this field. This system induces mutations by creating double-strand breaks (DSBs) in the genome and repairing them through associated repair pathways like NHEJ. As a result, the CRISPR-Cas system has been extensively used to transform plants for gene function analysis and to enhance desirable traits. Researchers have made significant progress in genetic engineering in recent years, particularly in understanding the CRISPR-Cas mechanism. This has led to various CRISPR-Cas variants, including CRISPR-Cas13, CRISPR interference, CRISPR activation, base editors, primes editors, and CRASPASE, a new CRISPR-Cas system for genetic engineering that cleaves proteins. Moreover, gene editing technologies like the prime editor and base editor approaches offer excellent opportunities for plant genome engineering. These cutting-edge tools have opened up new avenues for rapidly manipulating plant genomes. This review article provides a comprehensive overview of the current state of plant genetic engineering, focusing on recently developed tools for gene alteration and their potential applications in plant research.
KW - base editors
KW - CRASPASE
KW - CRISPR-Cas
KW - crops against various environmental challenges including drought
KW - gene editing tools
KW - prime editors
KW - TALEN
KW - zinc finger nuclease
UR - http://www.scopus.com/inward/record.url?scp=85180432698&partnerID=8YFLogxK
U2 - 10.3389/fgeed.2023.1272678
DO - 10.3389/fgeed.2023.1272678
M3 - Review article
C2 - 38144710
AN - SCOPUS:85180432698
VL - 5
JO - Frontiers in Genome Editing
JF - Frontiers in Genome Editing
M1 - 1272678
ER -