Products of the iron cycle on the early Earth

Nicholas J. Tosca, Clancy Zhijian Jiang, Birger Rasmussen, Janet Muhling

Research output: Contribution to journalReview article

9 Citations (Scopus)

Abstract

Traditional models for pre-GOE oceans commonly view iron as a critical link to multiple biogeochemical cycles, and an important source of electrons to primary producers. However, an accurate and detailed understanding of the ancient iron cycle has been limited by: (1) our ability to constrain primary depositional processes through observations of the ancient sedimentary rock record, and (2) a quantitative understanding of the aqueous geochemistry of ferrous iron. Recent advances in high resolution petrography and experimental geochemistry, however, have contributed to a new understanding of certain aspects of the early Fe cycle. Most importantly, high resolution petrographic studies of late Archean/early Paleoproterozoic iron formation have documented the prolific deposition of Fe(II)-silicate-rich chemical muds from a dominantly anoxic ocean. At the same time, recent experimental work has shed new light on processes likely to have controlled steady state Fe concentrations in Archean oceans. These studies suggest that spontaneous precipitation of Fe(II)-carbonate was probably rare in Archean oceans, and that Fe(II)-carbonate would have more commonly precipitated on the surfaces of suitable mineral substrates within clastic and chemical sediments, consistent with petrographic observations. In addition, although experimental investigations suggest that maximum Fe concentrations in Archean oceans would have been limited by authigenic Fe(II)-silicate production (rather than Fe(II)-carbonate), the rock record indicates that this process was rarely operative. Instead, sedimentology, stratigraphy, and geochemical modelling suggest that much of the precursor sediment to late Archean iron formation was produced as hydrothermal effluent interacted with seawater in close proximity to seafloor vents. Together, these observations help define a new topology for the ancient Fe cycle. In this view, hydrothermal effluent-seawater mixing would have strongly attenuated the flux of dissolved Fe 2+ to Archean oceans, and early diagenetic siderite formation may have balanced globally averaged riverine and hydrothermal Fe 2+ input fluxes. In contrast to previous models, this emerging picture of the early Fe cycle suggests that Fe played only a negligible role in supporting anoxygenic phototrophs, reinforcing the concept that electron donors were in comparatively limited supply before the advent of oxygenic photosynthesis.

Original languageEnglish
Pages (from-to)138-153
JournalFree Radical Biology and Medicine
Volume140
Issue numberSI
DOIs
Publication statusPublished - 6 May 2019

Fingerprint Dive into the research topics of 'Products of the iron cycle on the early Earth'. Together they form a unique fingerprint.

Cite this