Projects per year
Abstract
One electron oxidation of the monometallic alkenylacetylide complexes [Ru{C≡CC(R)=CH2}(dppe)Cp*] (1) and [Ru{C≡CC(R)=CH2}Cl(dppe)2] (2) (R = Ph (a); R = 4-MeS-C6H4 (b)) generates in each case a dinuclear bis(allenylidene) complex [{Ru}2{μ-C=C=C(R)–CH2–H2C–(R)C=C=C}][PF6]2 ({Ru} = Ru(dppe)Cp* ([3a,b][PF6]2); {Ru} = RuCl(dppe)2 ([4a,b][PF6]2), containing an unsaturated ethane bridge between both allenylidene moieties. Deprotonation of this ethane bridge results in the formation of the previously reported octa-3,5-diene-1,7-diyndiyl-bridged bimetallic species [{Ru}2{μ-C≡CC(R)=CH–HC=(R)CC≡C}] ({Ru} = Ru(dppe)Cp* (5a,b); {Ru} = RuCl(dppe)2 (6a,b). The isolation of these complexes illustrates a general synthetic route to these conjugated bimetallic species from monomeric alkenylacetylide precursors. Electrochemical and spectroelectrochemical investigations evince the ready formation of the representative redox series [5a]n+, and TD-DFT calculations performed on optimised structures featuring the simplified {Ru(dmpe)Cp} coordination sphere [{Ru(dmpe)Cp}2{μ-C≡CC(Ph)=HC–CH(Ph)CC≡C}]n+ ([5a†]n+) (n = 0, 1, 2) reveal significant delocalisation of the unpaired charge in the formally mixed-valent species (n = 1), consistent with Class III assignment within the Robin–Day classification scheme.
Original language | English |
---|---|
Article number | 20 |
Number of pages | 26 |
Journal | Inorganics |
Volume | 12 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2024 |
Fingerprint
Dive into the research topics of 'Probing the Electronic Structure of Dinuclear Carbon-Rich Complexes Containing an Octa-3,5-diene-1,7-diyndiyl Bridging Ligand'. Together they form a unique fingerprint.Projects
- 1 Active
-
Fill it, Squeeze it, Crush it: Extreme Gas Uptake in Microporous Materials
ARC Australian Research Council
1/10/20 → 30/09/24
Project: Research