TY - JOUR

T1 - Pricing options under a generalized Markov-Modulated jump-diffusion model

AU - Elliott, R.J.

AU - Siu, T.K.

AU - Chan, L.

AU - Lau, John

PY - 2007

Y1 - 2007

N2 - We consider the pricing of options when the dynamics of the risky underlying asset are driven by a Markov-modulated jump-diffusion model. We suppose that the market interest rate, the drift and the volatility of the underlying risky asset switch over time according to the state of an economy, which is modelled by a continuous-time Markov chain. The measure process is defined to be a generalized mixture of Poisson random measure and encompasses a general class of processes, for example, a generalized gamma process, which includes the weighted gamma process and the inverse Gaussian process. Another interesting feature of the measure process is that jump times and jump sizes can be correlated in general. The model considered here can provide market practitioners with. exibility in modelling the dynamics of the underlying risky asset. We employ the generalized regime-switching Esscher transform to determine an equivalent martingale measure in the incomplete market setting. A system of coupled partial-differential-integral equations satisfied by the European option prices is derived. We also derive a decomposition result for an American put option into its European counterpart and early exercise premium. Simulation results of the model have been presented and discussed.

AB - We consider the pricing of options when the dynamics of the risky underlying asset are driven by a Markov-modulated jump-diffusion model. We suppose that the market interest rate, the drift and the volatility of the underlying risky asset switch over time according to the state of an economy, which is modelled by a continuous-time Markov chain. The measure process is defined to be a generalized mixture of Poisson random measure and encompasses a general class of processes, for example, a generalized gamma process, which includes the weighted gamma process and the inverse Gaussian process. Another interesting feature of the measure process is that jump times and jump sizes can be correlated in general. The model considered here can provide market practitioners with. exibility in modelling the dynamics of the underlying risky asset. We employ the generalized regime-switching Esscher transform to determine an equivalent martingale measure in the incomplete market setting. A system of coupled partial-differential-integral equations satisfied by the European option prices is derived. We also derive a decomposition result for an American put option into its European counterpart and early exercise premium. Simulation results of the model have been presented and discussed.

U2 - 10.1080/07362990701420118

DO - 10.1080/07362990701420118

M3 - Article

VL - 25

SP - 821

EP - 843

JO - Stochastic Analysis and Applications

JF - Stochastic Analysis and Applications

SN - 0736-2994

IS - 4

ER -