Prevalence of resistance genes to biocides in antibiotic-resistant Pseudomonas aeruginosa clinical isolates

Malek Namaki, Shahram Habibzadeh, Hamid Vaez, Mohsen Arzanlou, Somayeh Safarirad, Seyed Ali Bazghandi, Amirhossein Sahebkar, Farzad Khademi

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Background: Biocides are frequently used as preservative, disinfectant and sterilizer against many microorganisms in hospitals, industry and home. However, the reduced susceptibility rate of Pseudomonas aeruginosa (P. aeruginosa) strains to biocides is increasing. The aim of this study was to evaluate the antimicrobial activity of four frequently used biocides against P. aeruginosa and to determine the prevalence of genes involved in biocide resistance. Methods: A total of 76 clinical isolates of P. aeruginosa strains were used in the present study. The minimum inhibitory concentrations (MICs) of four biocides, i.e. chlorhexidine digluconate, benzalkonium chloride, triclosan and formaldehyde, against P. aeruginosa strains were determined using agar dilution method. In addition, the prevalence of biocide resistance genes was determined using the polymerase chain reaction (PCR) method. Results: In the present study, the highest MIC90 and MIC95 (epidemiological cut-off) values were observed for benzalkonium chloride (1024 μg/mL), followed by formaldehyde (512 μg/mL), triclosan (512 μg/mL) and chlorhexidine digluconate (64 μg/mL). Furthermore, the prevalence of qacEΔ1, qacE, qacG, fabV, cepA and fabI genes were 73.7% (n = 56), 26.3% (n = 20), 11.8% (n = 9), 84.2% (n = 64), 81.5% (n = 62) and 0% (n = 0), respectively. A significant association was observed between the presence of biocide resistance genes and MICs (p < 0.05). Furthermore, there was no significant association between the presence of biocide resistance genes and antibiotic resistance (p > 0.05), except for levofloxacin and norfloxacin antibiotics and qacE and qacG genes (p < 0.05). Conclusion: Our results revealed that chlorhexidine digluconate is the most effective biocide against P. aeruginosa isolates in Ardabil hospitals. However, we recommend continuous monitoring of the antimicrobial activity of biocides and the prevalence of biocide-associated resistance genes for a better prevention of microorganism dissemination and infection control in hospitals.

Original languageEnglish
Pages (from-to)2149-2155
Number of pages7
JournalMolecular Biology Reports
Volume49
Issue number3
Early online date1 Dec 2021
DOIs
Publication statusPublished - Mar 2022

Fingerprint

Dive into the research topics of 'Prevalence of resistance genes to biocides in antibiotic-resistant Pseudomonas aeruginosa clinical isolates'. Together they form a unique fingerprint.

Cite this