Predictive Vegetation Modeling for Conservation : Impact of Error Propagation from Digital Elevation Data

Kimberly Van Niel, M.P. Austin

    Research output: Contribution to journalArticlepeer-review

    36 Citations (Scopus)

    Abstract

    The effect of digital elevation model (DEM) error on environmental variables, and subsequently on predictive habitat models, has not been explored. Based on an error analysis of a DEM, multiple error realizations of the DEM were created and used to develop both direct and indirect environmental variables for input to predictive habitat models. The study explores the effects of DEM error and the resultant uncertainty of results on typical steps in the modeling procedure for prediction of vegetation species presence/absence. Results indicate that all of these steps and results, including the statistical significance of environmental variables, shapes of species response curves in generalized additive models (GAMs), stepwise model selection, coefficients and standard errors for generalized linear models (GLMs), prediction accuracy (Cohen's kappa and AUC), and spatial extent of predictions, were greatly affected by this type of error. Error in the DEM can affect the reliability of interpretations of model results and level of accuracy in predictions, as well as the spatial extent of the predictions. We suggest that the sensitivity of DEM-derived environmental variables to error in the DEM should be considered before including them in the modeling processes.
    Original languageEnglish
    Pages (from-to)266-280
    JournalEcological Applications
    Volume17
    Issue number1
    DOIs
    Publication statusPublished - 2007

    Fingerprint

    Dive into the research topics of 'Predictive Vegetation Modeling for Conservation : Impact of Error Propagation from Digital Elevation Data'. Together they form a unique fingerprint.

    Cite this