Prediction of permeability and unconfined compressive strength of pervious concrete using evolved support vector regression

Junbo Sun, Junfei Zhang, Yunfan Gu, Yimiao Huang, Yuantian Sun, Guowei Ma

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Pervious concrete is a widely used construction material thanks to its good drainage characteristics. Before application, its most important properties, i.e. the permeability coefficient (PC) and 28-day unconfined compressive strength (UCS) are required to be tested. However, conducting PC and UCS tests with multiple influencing variables is time-consuming and costly. To address this issue, this paper proposed, for the first time, an evolved support vector regression (ESVR) tuned by beetle antennae search (BAS) to accurately and effectively predict the PC and UCS of pervious concrete. To prepare the dataset of the ESVR model, 270 specimens in total were prepared and casted in a controlled environment in the laboratory. The water-to-cement (w/c) ratio, aggregate-to-cement (a/c) ratio, and aggregate size were selected as the crucial influencing variables for the inputs, while PC and UCS were the outputs of this model. The results indicate that both the PC and UCS firstly increased and then decreased with increasing w/c ratio. As the a/c ratio increased, PC increased, while UCS decreased. Moreover, BAS is more reliable and efficient than random hyper-parameter selection for hyper-parameter tuning. A low root-mean-square error (RMSE) and high correlation coefficient (R) indicate a relatively high predictive capability of the proposed ESVR model. The sensitivity analysis (SA) suggests the a/c ratio and aggregate size were the most sensitive variables for UCS and PC, respectively. This pioneering work provides a simple and convenient method for evaluating PC and UCS of pervious concrete.

Original languageEnglish
Pages (from-to)440-449
Number of pages10
JournalConstruction and Building Materials
Volume207
DOIs
Publication statusPublished - 20 May 2019

Fingerprint Dive into the research topics of 'Prediction of permeability and unconfined compressive strength of pervious concrete using evolved support vector regression'. Together they form a unique fingerprint.

Cite this