TY - JOUR
T1 - Predicting the performance of lithium adsorption and recovery from unconventional water sources with machine learning
AU - Xu, Ziyang
AU - Ding, Yihao
AU - Han, Soyeon Caren
AU - Zhang, Changyong
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/11/15
Y1 - 2024/11/15
N2 - Selective lithium (Li) recovery from unconventional water sources (UWS) (e.g., shale gas waters, geothermal brines, and rejected seawater desalination brines) using inorganic lithium-ion sieve (LIS) materials can address Li supply shortages and distribution issues. However, the development of high-performance LIS materials and the optimization of recovery-related operating parameters are hampered by the variety of production methods, intricate procedures, and experimental expenses. Machine learning (ML) techniques offer potential solutions for enhancing LIS material development. We collected literature data on Li adsorption, categorizing 16 parameters into adsorbent parameters, operating parameters, and solution components. Three tree-based algorithms—Random Forest (RF), Gradient Boosting Decision Trees (GBDT), and Extreme Gradient Boosting (XGBoost)—were used to evaluate the impact of these parameters on lithium adsorption. The grouped random splitting method limited data leakage and mitigated overfitting. XGBoost demonstrated the best performance, with an R² of 0.98 and a root-mean-squared error (RMSE) of 1.72. The SHAP values highlighted that operating parameters were the most influential, followed by adsorbent parameters and coexisting ion concentrations. Therefore, focusing on optimizing operating parameters or making targeted improvements on LIS based on operating conditions will enhance LIS performances in UWS. These insights are crucial for optimizing Li adsorption processes and designing effective inorganic LIS materials.
AB - Selective lithium (Li) recovery from unconventional water sources (UWS) (e.g., shale gas waters, geothermal brines, and rejected seawater desalination brines) using inorganic lithium-ion sieve (LIS) materials can address Li supply shortages and distribution issues. However, the development of high-performance LIS materials and the optimization of recovery-related operating parameters are hampered by the variety of production methods, intricate procedures, and experimental expenses. Machine learning (ML) techniques offer potential solutions for enhancing LIS material development. We collected literature data on Li adsorption, categorizing 16 parameters into adsorbent parameters, operating parameters, and solution components. Three tree-based algorithms—Random Forest (RF), Gradient Boosting Decision Trees (GBDT), and Extreme Gradient Boosting (XGBoost)—were used to evaluate the impact of these parameters on lithium adsorption. The grouped random splitting method limited data leakage and mitigated overfitting. XGBoost demonstrated the best performance, with an R² of 0.98 and a root-mean-squared error (RMSE) of 1.72. The SHAP values highlighted that operating parameters were the most influential, followed by adsorbent parameters and coexisting ion concentrations. Therefore, focusing on optimizing operating parameters or making targeted improvements on LIS based on operating conditions will enhance LIS performances in UWS. These insights are crucial for optimizing Li adsorption processes and designing effective inorganic LIS materials.
KW - Adsorption
KW - Electrosorption
KW - Lithium recovery
KW - Machine learning
KW - Prediction
KW - Unconventional water sources
UR - https://www.scopus.com/pages/publications/85203414937
U2 - 10.1016/j.watres.2024.122374
DO - 10.1016/j.watres.2024.122374
M3 - Article
C2 - 39260198
AN - SCOPUS:85203414937
SN - 0043-1354
VL - 266
JO - Water Research
JF - Water Research
M1 - 122374
ER -