Projects per year
Abstract
Steel catenary risers (SCRs) are subjected to fatigue in the touchdown zone (TDZ) where the pipe interacts with the seabed. In this zone the seabed is subjected to intermittent episodes of cyclic loading and reconsolidation during long-term operation. Cyclic loading, reconsolidation and maintained load can cause variations in the soil strength and stiffness, which has a significant influence on the fatigue life of the riser in the TDZ. The weakening effect of cyclic loading on soil strength is well recognized throughout design practice, and methodologies for determining the cyclic 'fatigue' of clay during undrained cyclic loading are well established (e.g. Andersen et al. 1988; Andersen 2015). However, traditional undrained assessments neglect the effects of drainage and consolidation that inevitably occur in pipe-seabed interaction during long-term operational stages, and can lead to changes in stiffness by a factor of up to 5 or 10. This overlooked effect of consolidation on soil resistance and stiffness can be very important for SCR fatigue analysis. In this paper, a new analytical framework considering these effects has been used to analyze vertical pipe-seabed interaction. This framework is developed using a critical-state concept with effective stresses, and by discretizing the soil domain as a one-dimensional column of soil elements. The model can accurately capture the changing soil resistance and stiffness to account for the effects of remoulding, reconsolidation and maintained load. The framework is used to back-analysis the pipe-soil interaction response during small and large amplitude vertical cycles. The simulation prediction compares well with the measured results from the laboratory (Aubeny et al., 2008), and can accurately capture the observed changes in stiffness of up to a factor of 5.
Original language | English |
---|---|
Title of host publication | Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE |
Publisher | ASME International |
Number of pages | 10 |
Volume | 9 |
ISBN (Electronic) | 9780791857779 |
DOIs | |
Publication status | Published - 1 Jan 2017 |
Event | ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2017 - Trondheim, Norway Duration: 25 Jun 2017 → 30 Jun 2017 |
Conference
Conference | ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2017 |
---|---|
Country/Territory | Norway |
City | Trondheim |
Period | 25/06/17 → 30/06/17 |
Fingerprint
Dive into the research topics of 'Predicting the changing soil response for vertical pipe-seabed interaction accounting for remoulding, reconsolidation and maintained load'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ARC ITRH for Offshore Floating Facilities
Watson, P. (Investigator 01), Cassidy, M. (Investigator 02), Efthymiou, M. (Investigator 03), Ivey, G. (Investigator 04), Jones, N. (Investigator 05), Cheng, L. (Investigator 06), Draper, S. (Investigator 07), Zhao, M. (Investigator 08), Randolph, M. (Investigator 09), Gaudin, C. (Investigator 10), O'Loughlin, C. (Investigator 11), Hodkiewicz, M. (Investigator 12), Cripps, E. (Investigator 13), Zhao, W. (Investigator 14), Wolgamot, H. (Investigator 15), White, D. (Investigator 16), Doherty, J. (Investigator 17), Taylor, P. (Investigator 18), Stanier, S. (Investigator 19) & Gourvenec, S. (Investigator 20)
ARC Australian Research Council
1/01/14 → 30/12/21
Project: Research