Potential Dependence of Surfactant Adsorption at the Graphite Electrode/Deep Eutectic Solvent Interface

Katharina Häckl, Hua Li, Iain M. Aldous, Terrence Tsui, Werner Kunz, Andrew P. Abbott, Gregory G. Warr, Rob Atkin

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Atomic force microscopy and cyclic voltammetry are used to probe how ionic surfactant adsorbed layer structure affects redox processes at deep eutectic solvent (DES)/graphite interfaces. Unlike its behavior in water, sodium dodecyl sulfate (SDS) in DESs only adsorbs as a complete layer of hemicylindrical hemimicelles far above its critical micelle concentration (CMC). Near the CMC it forms a tail-to-tail monolayer at open-circuit potential (OCP) and positive potentials, and it desorbs at negative potentials. In contrast, cetyltrimethylammonium bromide (CTAB) adsorbs as hemimicelles at low concentrations and remains adsorbed at both positive and negative potentials. The SDS horizontal monolayer has little overall effect on redox processes at the graphite interface, but hemimicelles form an effective and stable barrier. The stronger solvophobic interactions between the C16 versus C12 alkyl chains in the DES allow CTAB to self-assemble into a robust coating at low concentrations and illustrate how the structure of the DES/electrode interface and electrochemical response can be engineered by controlling surfactant structure.

Original languageEnglish
Pages (from-to)5331-5337
Number of pages7
JournalJournal of Physical Chemistry Letters
Issue number18
Publication statusPublished - 19 Sept 2019


Dive into the research topics of 'Potential Dependence of Surfactant Adsorption at the Graphite Electrode/Deep Eutectic Solvent Interface'. Together they form a unique fingerprint.

Cite this