Abstract
We present some explicit formulas for solutions to nonhomogeneous boundary value problems involving any positive power of the Laplacian in the half-space. For non-integer powers the operator becomes nonlocal and this requires a suitable extension of Dirichlet-type boundary conditions. A key ingredient in our proofs is a point inversion transformation which preserves har-monicity and allows us to use known results for the ball. We include uniqueness statements, regularity estimates, and describe the growth or decay of solutions at infinity and at the boundary.
Original language | English |
---|---|
Pages (from-to) | 1205-1235 |
Number of pages | 31 |
Journal | Discrete and Continuous Dynamical Systems- Series A |
Volume | 39 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Mar 2019 |