TY - JOUR
T1 - Pore size dynamics in interpenetrated metal organic frameworks for selective sensing of aromatic compounds
AU - Myers, Matthew
AU - Podolska, A.
AU - Heath, C.H.
AU - Baker, Murray
AU - Pejcic, B.
PY - 2014
Y1 - 2014
N2 - The two-fold interpenetrated metal-organic framework, [Zn2(bdc)2(dpNDI)]n (bdc=1,4-benzenedicarboxylate, dpNDI=N'N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide) can undergo structural re-arrangement upon adsorption of chemical species changing its pore structure. For a competitive binding process with multiple analytes of different sizes and geometries, the interpenetrated framework will adopt a conformation to maximize the overall binding interactions. In this study, we show for binary mixtures that there is a high selectivity for the larger methylated aromatic compounds, toluene and p-xylene, over the small non-methylated benzene. The dpNDI moiety within [Zn2(bdc)2(dpNDI)]n forms an exciplex with these aromatic compounds. The emission wavelength is dependent on the strength of the host-guest CT interaction allowing these compounds to be distinguished. We show that the sorption selectivity characteristics can have a significant impact on the fluorescence sensor response of [Zn2(bdc)2(dpNDI)]n towards environmentally important hydrocarbons based contaminants (i.e., BTEX, PAH). © 2014.
AB - The two-fold interpenetrated metal-organic framework, [Zn2(bdc)2(dpNDI)]n (bdc=1,4-benzenedicarboxylate, dpNDI=N'N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide) can undergo structural re-arrangement upon adsorption of chemical species changing its pore structure. For a competitive binding process with multiple analytes of different sizes and geometries, the interpenetrated framework will adopt a conformation to maximize the overall binding interactions. In this study, we show for binary mixtures that there is a high selectivity for the larger methylated aromatic compounds, toluene and p-xylene, over the small non-methylated benzene. The dpNDI moiety within [Zn2(bdc)2(dpNDI)]n forms an exciplex with these aromatic compounds. The emission wavelength is dependent on the strength of the host-guest CT interaction allowing these compounds to be distinguished. We show that the sorption selectivity characteristics can have a significant impact on the fluorescence sensor response of [Zn2(bdc)2(dpNDI)]n towards environmentally important hydrocarbons based contaminants (i.e., BTEX, PAH). © 2014.
UR - https://www.scopus.com/pages/publications/84896035331
U2 - 10.1016/j.aca.2014.02.004
DO - 10.1016/j.aca.2014.02.004
M3 - Article
C2 - 24636414
SN - 0003-2670
VL - 819
SP - 78
EP - 81
JO - Analytica Chimica Acta
JF - Analytica Chimica Acta
ER -