TY - JOUR
T1 - Population Pharmacokinetics of Lamotrigine
AU - Chan, V.
AU - Morris, R.G.
AU - Ilett, Kenneth
AU - Tett, S.E.
PY - 2001
Y1 - 2001
N2 - The present study estimated the population pharmacokinetics of lamotrigine in patients receiving oral lamotrigine therapy with drug concentration monitoring, and determined intersubject and intrasubject variability. A total of 129 patients were analyzed from two clinical sites. Of these, 124 patients provided spare data (198 concentration-time points); nine patients (four from a previous group plus five from the current group) provided rich data (431 points). The population analysis was conducted using P-PHARM (TM) (SIMED Scientific Software, Cedex, France), a nonlinear mixed-effect modeling program. A single exponential elimination model (first-order absorption) with heteroscedastic weighting was used. Apparent clearance (CL/F) and volume of distribution (V/F) were the pharmacokinetic parameters estimated. Covariate analysis was performed to determine which factors explained any of the variability associated with lamotrigine clearance. Population estimates of CL/F and V/F for lamotrigine generated in the final model were 2.14 +/- 0.81 L/h and 78.1 +/- 5.1 L/kg. Intersubject and intrasubject variability for clearance was 38% and 38%, respectively. The covariates of concomitant valproate and phenytoin therapy accounted for 42% of the intersubject variability of clearance. Age, gender, clinic site, and other concomitant antiepileptic drugs did not influence clearance. This study of the population pharmacokinetics of lamotrigine in patients using the drug clinically provides useful data and should lead to better dosage individualization for lamotrigine.
AB - The present study estimated the population pharmacokinetics of lamotrigine in patients receiving oral lamotrigine therapy with drug concentration monitoring, and determined intersubject and intrasubject variability. A total of 129 patients were analyzed from two clinical sites. Of these, 124 patients provided spare data (198 concentration-time points); nine patients (four from a previous group plus five from the current group) provided rich data (431 points). The population analysis was conducted using P-PHARM (TM) (SIMED Scientific Software, Cedex, France), a nonlinear mixed-effect modeling program. A single exponential elimination model (first-order absorption) with heteroscedastic weighting was used. Apparent clearance (CL/F) and volume of distribution (V/F) were the pharmacokinetic parameters estimated. Covariate analysis was performed to determine which factors explained any of the variability associated with lamotrigine clearance. Population estimates of CL/F and V/F for lamotrigine generated in the final model were 2.14 +/- 0.81 L/h and 78.1 +/- 5.1 L/kg. Intersubject and intrasubject variability for clearance was 38% and 38%, respectively. The covariates of concomitant valproate and phenytoin therapy accounted for 42% of the intersubject variability of clearance. Age, gender, clinic site, and other concomitant antiepileptic drugs did not influence clearance. This study of the population pharmacokinetics of lamotrigine in patients using the drug clinically provides useful data and should lead to better dosage individualization for lamotrigine.
U2 - 10.1097/00007691-200112000-00006
DO - 10.1097/00007691-200112000-00006
M3 - Article
SN - 0163-4356
VL - 23
SP - 630
EP - 635
JO - Therapeutic Drug Monitoring
JF - Therapeutic Drug Monitoring
IS - 6
ER -