TY - JOUR
T1 - Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes
AU - NBCS Collaborators
AU - ABCTB Investigators
AU - kConFab/AOCS Investigators
AU - Mavaddat, Nasim
AU - Michailidou, Kyriaki
AU - Dennis, Joe
AU - Lush, Michael
AU - Fachal, Laura
AU - Lee, Andrew
AU - Tyrer, Jonathan P.
AU - Chen, Ting Huei
AU - Wang, Qin
AU - Bolla, Manjeet K.
AU - Yang, Xin
AU - Adank, Muriel A.
AU - Ahearn, Thomas
AU - Aittomäki, Kristiina
AU - Allen, Jamie
AU - Andrulis, Irene L.
AU - Anton-Culver, Hoda
AU - Antonenkova, Natalia N.
AU - Arndt, Volker
AU - Aronson, Kristan J.
AU - Auer, Paul L.
AU - Auvinen, Päivi
AU - Barrdahl, Myrto
AU - Beane Freeman, Laura E.
AU - Beckmann, Matthias W.
AU - Behrens, Sabine
AU - Benitez, Javier
AU - Bermisheva, Marina
AU - Bernstein, Leslie
AU - Blomqvist, Carl
AU - Bogdanova, Natalia V.
AU - Bojesen, Stig E.
AU - Bonanni, Bernardo
AU - Børresen-Dale, Anne Lise
AU - Brauch, Hiltrud
AU - Bremer, Michael
AU - Brenner, Hermann
AU - Brentnall, Adam
AU - Brock, Ian W.
AU - Brooks-Wilson, Angela
AU - Brucker, Sara Y.
AU - Brüning, Thomas
AU - Burwinkel, Barbara
AU - Campa, Daniele
AU - Carter, Brian D.
AU - Castelao, Jose E.
AU - Chanock, Stephen J.
AU - Chlebowski, Rowan
AU - Christiansen, Hans
AU - Clarke, Christine L.
AU - Collée, J. Margriet
AU - Cordina-Duverger, Emilie
AU - Cornelissen, Sten
AU - Couch, Fergus J.
AU - Cox, Angela
AU - Cross, Simon S.
AU - Czene, Kamila
AU - Daly, Mary B.
AU - Devilee, Peter
AU - Dörk, Thilo
AU - dos-Santos-Silva, Isabel
AU - Dumont, Martine
AU - Durcan, Lorraine
AU - Dwek, Miriam
AU - Eccles, Diana M.
AU - Ekici, Arif B.
AU - Eliassen, A. Heather
AU - Ellberg, Carolina
AU - Engel, Christoph
AU - Eriksson, Mikael
AU - Evans, D. Gareth
AU - Fasching, Peter A.
AU - Figueroa, Jonine
AU - Fletcher, Olivia
AU - Flyger, Henrik
AU - Försti, Asta
AU - Fritschi, Lin
AU - Gabrielson, Marike
AU - Gago-Dominguez, Manuela
AU - Gapstur, Susan M.
AU - García-Sáenz, José A.
AU - Gaudet, Mia M.
AU - Georgoulias, Vassilios
AU - Giles, Graham G.
AU - Gilyazova, Irina R.
AU - Glendon, Gord
AU - Goldberg, Mark S.
AU - Goldgar, David E.
AU - González-Neira, Anna
AU - Grenaker Alnæs, Grethe I.
AU - Grip, Mervi
AU - Gronwald, Jacek
AU - Grundy, Anne
AU - Guénel, Pascal
AU - Haeberle, Lothar
AU - Hahnen, Eric
AU - Haiman, Christopher A.
AU - Håkansson, Niclas
AU - Hamann, Ute
AU - Hankinson, Susan E.
AU - Harkness, Elaine F.
AU - Hart, Steven N.
AU - He, Wei
AU - Hein, Alexander
AU - Heyworth, Jane
AU - Hillemanns, Peter
AU - Hollestelle, Antoinette
AU - Hooning, Maartje J.
AU - Hoover, Robert N.
AU - Hopper, John L.
AU - Howell, Anthony
AU - Huang, Guanmengqian
AU - Humphreys, Keith
AU - Hunter, David J.
AU - Jakimovska, Milena
AU - Jakubowska, Anna
AU - Janni, Wolfgang
AU - John, Esther M.
AU - Johnson, Nichola
AU - Jones, Michael E.
AU - Jukkola-Vuorinen, Arja
AU - Jung, Audrey
AU - Kaaks, Rudolf
AU - Kaczmarek, Katarzyna
AU - Kataja, Vesa
AU - Keeman, Renske
AU - Kerin, Michael J.
AU - Khusnutdinova, Elza
AU - Kiiski, Johanna I.
AU - Knight, Julia A.
AU - Ko, Yon Dschun
AU - Kosma, Veli Matti
AU - Koutros, Stella
AU - Kristensen, Vessela N.
AU - Krüger, Ute
AU - Kühl, Tabea
AU - Lambrechts, Diether
AU - Le Marchand, Loic
AU - Lee, Eunjung
AU - Lejbkowicz, Flavio
AU - Lilyquist, Jenna
AU - Lindblom, Annika
AU - Lindström, Sara
AU - Lissowska, Jolanta
AU - Lo, Wing Yee
AU - Loibl, Sibylle
AU - Long, Jirong
AU - Lubiński, Jan
AU - Lux, Michael P.
AU - MacInnis, Robert J.
AU - Maishman, Tom
AU - Makalic, Enes
AU - Maleva Kostovska, Ivana
AU - Mannermaa, Arto
AU - Manoukian, Siranoush
AU - Margolin, Sara
AU - Martens, John W.M.
AU - Martinez, Maria Elena
AU - Mavroudis, Dimitrios
AU - McLean, Catriona
AU - Meindl, Alfons
AU - Menon, Usha
AU - Middha, Pooja
AU - Miller, Nicola
AU - Moreno, Fernando
AU - Mulligan, Anna Marie
AU - Mulot, Claire
AU - Muñoz-Garzon, Victor M.
AU - Neuhausen, Susan L.
AU - Nevanlinna, Heli
AU - Neven, Patrick
AU - Newman, William G.
AU - Nielsen, Sune F.
AU - Nordestgaard, Børge G.
AU - Norman, Aaron
AU - Offit, Kenneth
AU - Olson, Janet E.
AU - Olsson, Håkan
AU - Orr, Nick
AU - Pankratz, V. Shane
AU - Park-Simon, Tjoung Won
AU - Perez, Jose I.A.
AU - Pérez-Barrios, Clara
AU - Peterlongo, Paolo
AU - Peto, Julian
AU - Pinchev, Mila
AU - Plaseska-Karanfilska, Dijana
AU - Polley, Eric C.
AU - Prentice, Ross
AU - Presneau, Nadege
AU - Prokofyeva, Darya
AU - Purrington, Kristen
AU - Pylkäs, Katri
AU - Rack, Brigitte
AU - Radice, Paolo
AU - Rau-Murthy, Rohini
AU - Rennert, Gad
AU - Rennert, Hedy S.
AU - Rhenius, Valerie
AU - Robson, Mark
AU - Romero, Atocha
AU - Ruddy, Kathryn J.
AU - Ruebner, Matthias
AU - Saloustros, Emmanouil
AU - Sandler, Dale P.
AU - Sawyer, Elinor J.
AU - Schmidt, Daniel F.
AU - Schmutzler, Rita K.
AU - Schneeweiss, Andreas
AU - Schoemaker, Minouk J.
AU - Schumacher, Fredrick
AU - Schürmann, Peter
AU - Schwentner, Lukas
AU - Scott, Christopher
AU - Scott, Rodney J.
AU - Seynaeve, Caroline
AU - Shah, Mitul
AU - Sherman, Mark E.
AU - Shrubsole, Martha J.
AU - Shu, Xiao Ou
AU - Slager, Susan
AU - Smeets, Ann
AU - Sohn, Christof
AU - Soucy, Penny
AU - Southey, Melissa C.
AU - Spinelli, John J.
AU - Stegmaier, Christa
AU - Stone, Jennifer
AU - Swerdlow, Anthony J.
AU - Tamimi, Rulla M.
AU - Tapper, William J.
AU - Taylor, Jack A.
AU - Terry, Mary Beth
AU - Thöne, Kathrin
AU - Tollenaar, Rob A.E.M.
AU - Tomlinson, Ian
AU - Truong, Thérèse
AU - Tzardi, Maria
AU - Ulmer, Hans Ulrich
AU - Untch, Michael
AU - Vachon, Celine M.
AU - van Veen, Elke M.
AU - Vijai, Joseph
AU - Weinberg, Clarice R.
AU - Wendt, Camilla
AU - Whittemore, Alice S.
AU - Wildiers, Hans
AU - Willett, Walter
AU - Winqvist, Robert
AU - Wolk, Alicja
AU - Cohen, Paul
PY - 2019/1/3
Y1 - 2019/1/3
N2 - Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.
AB - Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.
KW - breast
KW - cancer
KW - epidemiology
KW - genetic
KW - polygenic
KW - prediction
KW - risk
KW - score
KW - screening
KW - stratification
UR - http://www.scopus.com/inward/record.url?scp=85059498503&partnerID=8YFLogxK
U2 - 10.1016/j.ajhg.2018.11.002
DO - 10.1016/j.ajhg.2018.11.002
M3 - Article
C2 - 30554720
AN - SCOPUS:85059498503
SN - 0002-9297
VL - 104
SP - 21
EP - 34
JO - American Journal of Human Genetics
JF - American Journal of Human Genetics
IS - 1
ER -