Plasma Amyloid-β Homeostasis Is Associated with Body Mass Index and Weight Loss in People with Overweight and Obesity

Emily S. Brook, Zachary J. D'Alonzo, Virginie Lam, Dick C. Chan, Satvinder S. Dhaliwal, Geraldb F. Watts, John C.L. Mamo, Ryusuke Takechi

Research output: Contribution to journalArticlepeer-review

Abstract

BACKGROUND: Obesity is linked to a higher incidence of Alzheimer's disease (AD). Studies show that plasma amyloid-β (Aβ) dyshomeostasis, particularly low 42/40 ratio indicates a heightened risk for developing AD. However, the relationship between body mass index (BMI) and circulating plasma Aβ has not been extensively studied. OBJECTIVE: We hypothesized that people with a high BMI have altered plasma Aβ homeostasis compared with people with a lower BMI. We also tested whether reducing BMI by calorie-restriction could normalize plasma concentrations of Aβ. METHODS: Plasma concentrations of Aβ40, Aβ42, and Aβ42/40 ratio were measured in 106 participants with BMIs classified as lean, overweight, or obese. From this cohort, twelve participants with overweight or obese BMIs entered a 12-week calorie-restriction weight loss program. We then tested whether decreasing BMI affected plasma Aβ concentrations. RESULTS: Plasma Aβ42/40 ratio was 17.54% lower in participants with an obese BMI compared to lean participants (p < 0.0001), and 11.76% lower compared to participants with an overweight BMI (p < 0.0001). The weight loss regimen decreased BMI by an average of 4.02% (p = 0.0005) and was associated with a 6.5% decrease in plasma Aβ40 (p = 0.0425). However, weight loss showed negligible correlations with plasma Aβ40, Aβ42, and Aβ42/40 ratio. CONCLUSION: Obesity is associated with aberrant plasma Aβ homeostasis which may be associated with an increased risk for AD. Weight loss appears to lower Aβ40, but large-scale longitudinal studies in addition to molecular studies are required to elucidate the underlying mechanisms of how obesity and weight loss influence plasma Aβ homeostasis.

Original languageEnglish
Pages (from-to)653-664
Number of pages12
JournalJournal of Alzheimer's disease : JAD
Volume93
Issue number2
DOIs
Publication statusPublished - 2023

Cite this