TY - JOUR
T1 - Plant-Derived Substances for Prevention of Necrotising Enterocolitis
T2 - A Systematic Review of Animal Studies
AU - Mackay, Cheryl Anne
AU - Rath, Chandra
AU - Rao, Shripada
AU - Patole, Sanjay
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/3
Y1 - 2024/3
N2 - Inflammation, oxidative injury, and gut dysbiosis play an important role in the pathogenesis of necrotising enterocolitis (NEC). Plant-derived substances have historically been used as therapeutic agents due to their anti-inflammatory, antioxidant, and antimicrobial properties. We aimed to review pre-clinical evidence for plant-derived substances in the prevention and treatment of NEC. A systematic review was conducted using the following databases: PubMed, EMBASE, EMCARE, MEDLINE and Cochrane Library (PROSPERO CRD42022365477). Randomized controlled trials (RCTs) and quasi-RCTs that evaluated a plant-derived substance as an intervention for NEC in an animal model of the illness and compared pre-stated outcomes (e.g., clinical severity, severity of intestinal injury, mortality, laboratory markers of inflammation and oxidative injury) were included. Sixteen studies (n = 610) were included in the systematic review. Ten of the sixteen included RCTs (Preterm rat pups: 15, Mice: 1) reported mortality and all reported NEC-related histology. Meta-analysis showed decreased mortality [12/134 vs. 27/135; RR: 0.48 (95% CI: 0.26 to 0.87); p = 0.02, 10 RCTs] and decreased NEC in the experimental group [24/126 vs. 55/79; RR: 0.34 (95% CI: 0.22 to 0.52); p < 0.001, 6 RCTs]. Markers of inflammation (n = 11) and oxidative stress (n = 13) improved in all the studies that have reported this outcome. There was no significant publication bias for the outcome of mortality. Plant-derived substances have the potential to reduce the incidence and severity of histologically diagnosed NEC and mortality in rodent models. These findings are helpful in guiding further pre-clinical studies towards developing a food supplement for the prevention of NEC in preterm infants.
AB - Inflammation, oxidative injury, and gut dysbiosis play an important role in the pathogenesis of necrotising enterocolitis (NEC). Plant-derived substances have historically been used as therapeutic agents due to their anti-inflammatory, antioxidant, and antimicrobial properties. We aimed to review pre-clinical evidence for plant-derived substances in the prevention and treatment of NEC. A systematic review was conducted using the following databases: PubMed, EMBASE, EMCARE, MEDLINE and Cochrane Library (PROSPERO CRD42022365477). Randomized controlled trials (RCTs) and quasi-RCTs that evaluated a plant-derived substance as an intervention for NEC in an animal model of the illness and compared pre-stated outcomes (e.g., clinical severity, severity of intestinal injury, mortality, laboratory markers of inflammation and oxidative injury) were included. Sixteen studies (n = 610) were included in the systematic review. Ten of the sixteen included RCTs (Preterm rat pups: 15, Mice: 1) reported mortality and all reported NEC-related histology. Meta-analysis showed decreased mortality [12/134 vs. 27/135; RR: 0.48 (95% CI: 0.26 to 0.87); p = 0.02, 10 RCTs] and decreased NEC in the experimental group [24/126 vs. 55/79; RR: 0.34 (95% CI: 0.22 to 0.52); p < 0.001, 6 RCTs]. Markers of inflammation (n = 11) and oxidative stress (n = 13) improved in all the studies that have reported this outcome. There was no significant publication bias for the outcome of mortality. Plant-derived substances have the potential to reduce the incidence and severity of histologically diagnosed NEC and mortality in rodent models. These findings are helpful in guiding further pre-clinical studies towards developing a food supplement for the prevention of NEC in preterm infants.
KW - animal
KW - necrotizing enterocolitis
KW - newborn
KW - plant-derived substance
UR - http://www.scopus.com/inward/record.url?scp=85188884323&partnerID=8YFLogxK
U2 - 10.3390/nu16060832
DO - 10.3390/nu16060832
M3 - Review article
C2 - 38542743
AN - SCOPUS:85188884323
SN - 2072-6643
VL - 16
JO - Nutrients
JF - Nutrients
IS - 6
M1 - 832
ER -