TY - JOUR
T1 - Plant-aphid interactions with a focus on legumes
AU - Kamphuis, Lars
AU - Zulak, K.
AU - Gao, L.
AU - Anderson, Jonathan
AU - Singh, Karam
PY - 2013
Y1 - 2013
N2 - Sap-sucking insects such as aphids cause substantial yield losses in agriculture by draining plant nutrients as well as vectoring viruses. The main method of control in agriculture is through the application of insecticides. However, aphids rapidly evolve mechanisms to detoxify these, so there is a need to develop durable plant resistance to these damaging insect pests. The focus of this review is on aphid interactions with legumes, but work on aphid interactions with other plants, particularly Arabidopsis and tomato is also discussed. This review covers advances on the plant side of the interaction, including the identification of major resistance genes and quantitative trait loci conferring aphid resistance in legumes, basal and resistance gene mediated defence signalling following aphid infestation and the role of specialised metabolites. On the aphid side of the interaction, this review covers what is known about aphid effector proteins and aphid detoxification enzymes. Recent advances in these areas have provided insight into mechanisms underlying resistance to aphids and the strategies used by aphids for successful infestations and have significant impacts for the delivery of durable resistance to aphids in legume crops. © 2013 CSIRO.
AB - Sap-sucking insects such as aphids cause substantial yield losses in agriculture by draining plant nutrients as well as vectoring viruses. The main method of control in agriculture is through the application of insecticides. However, aphids rapidly evolve mechanisms to detoxify these, so there is a need to develop durable plant resistance to these damaging insect pests. The focus of this review is on aphid interactions with legumes, but work on aphid interactions with other plants, particularly Arabidopsis and tomato is also discussed. This review covers advances on the plant side of the interaction, including the identification of major resistance genes and quantitative trait loci conferring aphid resistance in legumes, basal and resistance gene mediated defence signalling following aphid infestation and the role of specialised metabolites. On the aphid side of the interaction, this review covers what is known about aphid effector proteins and aphid detoxification enzymes. Recent advances in these areas have provided insight into mechanisms underlying resistance to aphids and the strategies used by aphids for successful infestations and have significant impacts for the delivery of durable resistance to aphids in legume crops. © 2013 CSIRO.
U2 - 10.1071/FP13090
DO - 10.1071/FP13090
M3 - Article
VL - 40
SP - 1271
EP - 1284
JO - Functional Plant Biology
JF - Functional Plant Biology
SN - 1445-4408
IS - 12
ER -