Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

Research output: Chapter in Book/Conference paperConference paperpeer-review

15 Citations (Scopus)
306 Downloads (Pure)

Abstract

We present Picasso, a CUDA-based library comprising novel modules for deep learning over complex real-world 3D meshes. Hierarchical neural architectures have proved effective in multi-scale feature extraction which signifies the need for fast mesh decimation. However, existing methods rely on CPU-based implementations to obtain multi-resolution meshes. We design GPU-accelerated mesh decimation to facilitate network resolution reduction efficiently on-the-fly. Pooling and unpooling modules are defined on the vertex clusters gathered during decimation. For feature learning over meshes, Picasso contains three types of novel convolutions namely, facet2vertex, vertex2facet, and facet2facet convolution. Hence, it treats a mesh as a geometric structure comprising vertices and facets, rather than a spatial graph with edges as previous methods do. Picasso also incorporates a fuzzy mechanism in its filters for robustness to mesh sampling (vertex density). It exploits Gaussian mixtures to define fuzzy coefficients for the facet2vertex convolution, and barycentric interpolation to define the coefficients for the remaining two convolutions. In this release, we demonstrate the effectiveness of the proposed modules with competitive segmentation results on S3DIS. The library will be made public through github.
Original languageEnglish
Title of host publication2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages13849-13859
Number of pages11
ISBN (Electronic)9781665445092
ISBN (Print)978-1-6654-4509-2
DOIs
Publication statusPublished - 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021 - Virtual, Online, United States
Duration: 19 Jun 202125 Jun 2021

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021
Country/TerritoryUnited States
CityVirtual, Online
Period19/06/2125/06/21

Fingerprint

Dive into the research topics of 'Picasso: A CUDA-based Library for Deep Learning over 3D Meshes'. Together they form a unique fingerprint.

Cite this