Physiology, comparative genomics and germplasm development for improvement of salt tolerance in hexaploid wheat

    Research output: ThesisDoctoral Thesis

    105 Downloads (Pure)

    Abstract

    [Truncated abstract] Lophopyrum elongatum, a wild relative of wheat, can be used as a source of novel genes for improving the salt tolerance of bread wheat. Na+ `exclusion? is a major physiological mechanism for salt tolerance in the wheat L. elongatum amphiploid, and a large proportion (~50%) of the improved Na+ `exclusion? is contributed by a gene(s) on chromosome 3E. This study integrated physiological analysis with comparative genomics to identify gene orthologues that may regulate Na+ transport, and designed and implemented molecular markers for developing wheat L. elongatum recombinant lines with reduced portions of L. elongatum chromatin retaining the Na+ `exclusion? trait. Physiological analysis of leaf Na+ accumulation in wheat L. elongatum substitution lines confirmed that the 3E chromosome contributes a major effect on reduced leaf Na+ accumulation in wheat when grown at 200 mM NaCl. Candidate genes from the model plant, Arabidopsis thaliana, controlling Na+ transport into and from cells (SOS1, HKT1) or compartmentalisation within vacuoles (NHX1, NHX5, AVP1, AVP2) were targeted for comparative analysis in wheat. Wheat gene orthologues were identified by BLAST searching to identify either FL-cDNAs or ESTs, which were subsequently used to amplify genomic DNA, and orthologues confirmed by similar intron-exon structure between Arabidopsis and rice. Intron-exon comparisons showed the majority of exons were conserved between Arabidopsis, rice and wheat, but also indicated exon shuffling events since divergence from a common ancestor. Gene orthologues were assigned to homoeologous chromosomes and non-syntenic regions between wheat and L. elongatum, with the SOS1 orthologue located on group 3 chromosomes in wheat and L. elongatum. ... The recombinant line 524-568 contains a small introgression on the distal end of the long arm of wheat chromosome 3A and represents the most desirable line presently available for further germplasm development. The main outcomes of this thesis have been an increased understanding of the physiology and evolution of orthologues for Na+ transport in wheat and L. elongatum, improved methodologies for designing alien-specific PCR markers, and the development of overlapping recombinant lines that provide a source of novel genes for pyramiding into wheat and improving its tolerance to salt stress.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Publication statusUnpublished - 2006

    Fingerprint

    hexaploidy
    salt tolerance
    germplasm
    physiology
    Thinopyrum elongatum
    genomics
    wheat
    exons
    chromosomes
    genes
    introns
    Arabidopsis
    rice
    substitution lines
    wild relatives
    introgression
    vacuoles
    salt stress
    chromatin
    leaves

    Cite this

    @phdthesis{de6395845c7741f3a9f3dfe31b298597,
    title = "Physiology, comparative genomics and germplasm development for improvement of salt tolerance in hexaploid wheat",
    abstract = "[Truncated abstract] Lophopyrum elongatum, a wild relative of wheat, can be used as a source of novel genes for improving the salt tolerance of bread wheat. Na+ `exclusion? is a major physiological mechanism for salt tolerance in the wheat L. elongatum amphiploid, and a large proportion (~50{\%}) of the improved Na+ `exclusion? is contributed by a gene(s) on chromosome 3E. This study integrated physiological analysis with comparative genomics to identify gene orthologues that may regulate Na+ transport, and designed and implemented molecular markers for developing wheat L. elongatum recombinant lines with reduced portions of L. elongatum chromatin retaining the Na+ `exclusion? trait. Physiological analysis of leaf Na+ accumulation in wheat L. elongatum substitution lines confirmed that the 3E chromosome contributes a major effect on reduced leaf Na+ accumulation in wheat when grown at 200 mM NaCl. Candidate genes from the model plant, Arabidopsis thaliana, controlling Na+ transport into and from cells (SOS1, HKT1) or compartmentalisation within vacuoles (NHX1, NHX5, AVP1, AVP2) were targeted for comparative analysis in wheat. Wheat gene orthologues were identified by BLAST searching to identify either FL-cDNAs or ESTs, which were subsequently used to amplify genomic DNA, and orthologues confirmed by similar intron-exon structure between Arabidopsis and rice. Intron-exon comparisons showed the majority of exons were conserved between Arabidopsis, rice and wheat, but also indicated exon shuffling events since divergence from a common ancestor. Gene orthologues were assigned to homoeologous chromosomes and non-syntenic regions between wheat and L. elongatum, with the SOS1 orthologue located on group 3 chromosomes in wheat and L. elongatum. ... The recombinant line 524-568 contains a small introgression on the distal end of the long arm of wheat chromosome 3A and represents the most desirable line presently available for further germplasm development. The main outcomes of this thesis have been an increased understanding of the physiology and evolution of orthologues for Na+ transport in wheat and L. elongatum, improved methodologies for designing alien-specific PCR markers, and the development of overlapping recombinant lines that provide a source of novel genes for pyramiding into wheat and improving its tolerance to salt stress.",
    keywords = "Wheat, Effect of salt on, Breeding, Molecular genetics, Salt-tolerant crops, Comparative genomics, Germplasm development, Alien chromosome introgression, Salt tolerance, Lophopyrum elongatum, EST-derived microsatellite",
    author = "Daniel Mullan",
    year = "2006",
    language = "English",

    }

    TY - THES

    T1 - Physiology, comparative genomics and germplasm development for improvement of salt tolerance in hexaploid wheat

    AU - Mullan, Daniel

    PY - 2006

    Y1 - 2006

    N2 - [Truncated abstract] Lophopyrum elongatum, a wild relative of wheat, can be used as a source of novel genes for improving the salt tolerance of bread wheat. Na+ `exclusion? is a major physiological mechanism for salt tolerance in the wheat L. elongatum amphiploid, and a large proportion (~50%) of the improved Na+ `exclusion? is contributed by a gene(s) on chromosome 3E. This study integrated physiological analysis with comparative genomics to identify gene orthologues that may regulate Na+ transport, and designed and implemented molecular markers for developing wheat L. elongatum recombinant lines with reduced portions of L. elongatum chromatin retaining the Na+ `exclusion? trait. Physiological analysis of leaf Na+ accumulation in wheat L. elongatum substitution lines confirmed that the 3E chromosome contributes a major effect on reduced leaf Na+ accumulation in wheat when grown at 200 mM NaCl. Candidate genes from the model plant, Arabidopsis thaliana, controlling Na+ transport into and from cells (SOS1, HKT1) or compartmentalisation within vacuoles (NHX1, NHX5, AVP1, AVP2) were targeted for comparative analysis in wheat. Wheat gene orthologues were identified by BLAST searching to identify either FL-cDNAs or ESTs, which were subsequently used to amplify genomic DNA, and orthologues confirmed by similar intron-exon structure between Arabidopsis and rice. Intron-exon comparisons showed the majority of exons were conserved between Arabidopsis, rice and wheat, but also indicated exon shuffling events since divergence from a common ancestor. Gene orthologues were assigned to homoeologous chromosomes and non-syntenic regions between wheat and L. elongatum, with the SOS1 orthologue located on group 3 chromosomes in wheat and L. elongatum. ... The recombinant line 524-568 contains a small introgression on the distal end of the long arm of wheat chromosome 3A and represents the most desirable line presently available for further germplasm development. The main outcomes of this thesis have been an increased understanding of the physiology and evolution of orthologues for Na+ transport in wheat and L. elongatum, improved methodologies for designing alien-specific PCR markers, and the development of overlapping recombinant lines that provide a source of novel genes for pyramiding into wheat and improving its tolerance to salt stress.

    AB - [Truncated abstract] Lophopyrum elongatum, a wild relative of wheat, can be used as a source of novel genes for improving the salt tolerance of bread wheat. Na+ `exclusion? is a major physiological mechanism for salt tolerance in the wheat L. elongatum amphiploid, and a large proportion (~50%) of the improved Na+ `exclusion? is contributed by a gene(s) on chromosome 3E. This study integrated physiological analysis with comparative genomics to identify gene orthologues that may regulate Na+ transport, and designed and implemented molecular markers for developing wheat L. elongatum recombinant lines with reduced portions of L. elongatum chromatin retaining the Na+ `exclusion? trait. Physiological analysis of leaf Na+ accumulation in wheat L. elongatum substitution lines confirmed that the 3E chromosome contributes a major effect on reduced leaf Na+ accumulation in wheat when grown at 200 mM NaCl. Candidate genes from the model plant, Arabidopsis thaliana, controlling Na+ transport into and from cells (SOS1, HKT1) or compartmentalisation within vacuoles (NHX1, NHX5, AVP1, AVP2) were targeted for comparative analysis in wheat. Wheat gene orthologues were identified by BLAST searching to identify either FL-cDNAs or ESTs, which were subsequently used to amplify genomic DNA, and orthologues confirmed by similar intron-exon structure between Arabidopsis and rice. Intron-exon comparisons showed the majority of exons were conserved between Arabidopsis, rice and wheat, but also indicated exon shuffling events since divergence from a common ancestor. Gene orthologues were assigned to homoeologous chromosomes and non-syntenic regions between wheat and L. elongatum, with the SOS1 orthologue located on group 3 chromosomes in wheat and L. elongatum. ... The recombinant line 524-568 contains a small introgression on the distal end of the long arm of wheat chromosome 3A and represents the most desirable line presently available for further germplasm development. The main outcomes of this thesis have been an increased understanding of the physiology and evolution of orthologues for Na+ transport in wheat and L. elongatum, improved methodologies for designing alien-specific PCR markers, and the development of overlapping recombinant lines that provide a source of novel genes for pyramiding into wheat and improving its tolerance to salt stress.

    KW - Wheat

    KW - Effect of salt on

    KW - Breeding

    KW - Molecular genetics

    KW - Salt-tolerant crops

    KW - Comparative genomics

    KW - Germplasm development

    KW - Alien chromosome introgression

    KW - Salt tolerance

    KW - Lophopyrum elongatum

    KW - EST-derived microsatellite

    M3 - Doctoral Thesis

    ER -