TY - JOUR
T1 - Physiological responses of Bos taurus and Box indicus cattle to prolonged continuous heat and humidity
AU - Beatty, D.T.
AU - Barnes, A.
AU - Taylor, E.E.
AU - Pethick, D.
AU - Mccarthy, M.
AU - Maloney, Shane
PY - 2006
Y1 - 2006
N2 - Two experiments were conducted to investigate the physiological responses of Bos taurus (Angus cross, n = 6) and Bos indicus (Brahman, n = 6) cattle to prolonged heat and humidity, as can occur during live export by sea. Each experiment was carried out in climate-controlled rooms, where heifers were exposed to 15 d of sustained heat and humidity. The treatment was designed to be representative of a long-haul, live-export voyage leaving a southern Australian winter and traveling to a Middle Eastern summer. Wet bulb temperature (WBT) was used to give a combined measure of dry bulb temperature and relative humidity and was increased over several days, culminating in 5 d at 32 degrees C WBT between d 7 and 11. By d 11, the respiratory rate and core body temperature increased (P < 0.001) compared with values at lower ambient temperature on d 1 and 2 when climate-controlled rooms were not operating. Feed intake of Bos taurus was reduced (P < 0.001) by d 11, whereas that of Bos indicus did not change (P = 0.14). Despite no diurnal variation in climatic conditions, core body temperature of both Bos taurus and Bos indicus continued to show a circadian amplitude of approximately 1 degrees C throughout the hottest period. This amplitude increased during the recovery period after heat was removed (up to 1.8 degrees C for Bos indicus and 1.6 degrees C for Bos taurus). Water intake for both Bos taurus and Bos indicus increased when WBT increased (P < 0.01 on d 11). Significant acid-base and blood electrolyte imbalances occurred in both Bos taurus and Bos indicus, with changes in Bos taurus being more substantial and prolonged. The increase in respiratory rate coincided with a decrease in the partial pressures of carbon dioxide and bicarbonate in venous blood. However, during the hottest period, average daily venous blood pH remained unchanged. When the heat load was reduced after d 11, the blood pH decreased, indicating metabolic acidosis. Blood pH declined from 7.44 to 7.36 for Bos taurus (P < 0.001) and from 7.44 to 7.38 for Bos indicus (P < 0.001). Other parameters measured include heart rate; packed cell volume; plasma and urine Na, K, and Cl; urine pH; and specific gravity. Our results suggest that Bos taurus cattle experience significant physiological changes during exposure to prolonged and continuous high heat and humidity, with alterations persisting for some days after the heat-stress conditions subside. Bos indicus experience similar but less pronounced physiological changes.
AB - Two experiments were conducted to investigate the physiological responses of Bos taurus (Angus cross, n = 6) and Bos indicus (Brahman, n = 6) cattle to prolonged heat and humidity, as can occur during live export by sea. Each experiment was carried out in climate-controlled rooms, where heifers were exposed to 15 d of sustained heat and humidity. The treatment was designed to be representative of a long-haul, live-export voyage leaving a southern Australian winter and traveling to a Middle Eastern summer. Wet bulb temperature (WBT) was used to give a combined measure of dry bulb temperature and relative humidity and was increased over several days, culminating in 5 d at 32 degrees C WBT between d 7 and 11. By d 11, the respiratory rate and core body temperature increased (P < 0.001) compared with values at lower ambient temperature on d 1 and 2 when climate-controlled rooms were not operating. Feed intake of Bos taurus was reduced (P < 0.001) by d 11, whereas that of Bos indicus did not change (P = 0.14). Despite no diurnal variation in climatic conditions, core body temperature of both Bos taurus and Bos indicus continued to show a circadian amplitude of approximately 1 degrees C throughout the hottest period. This amplitude increased during the recovery period after heat was removed (up to 1.8 degrees C for Bos indicus and 1.6 degrees C for Bos taurus). Water intake for both Bos taurus and Bos indicus increased when WBT increased (P < 0.01 on d 11). Significant acid-base and blood electrolyte imbalances occurred in both Bos taurus and Bos indicus, with changes in Bos taurus being more substantial and prolonged. The increase in respiratory rate coincided with a decrease in the partial pressures of carbon dioxide and bicarbonate in venous blood. However, during the hottest period, average daily venous blood pH remained unchanged. When the heat load was reduced after d 11, the blood pH decreased, indicating metabolic acidosis. Blood pH declined from 7.44 to 7.36 for Bos taurus (P < 0.001) and from 7.44 to 7.38 for Bos indicus (P < 0.001). Other parameters measured include heart rate; packed cell volume; plasma and urine Na, K, and Cl; urine pH; and specific gravity. Our results suggest that Bos taurus cattle experience significant physiological changes during exposure to prolonged and continuous high heat and humidity, with alterations persisting for some days after the heat-stress conditions subside. Bos indicus experience similar but less pronounced physiological changes.
M3 - Article
SN - 0021-8812
VL - 84
SP - 972
EP - 985
JO - Journal of Animal Science
JF - Journal of Animal Science
IS - 4
ER -