Abstract
Photon sources are fundamental components for any quantum photonic technology. The ability to generate high count-rate and low-noise correlated photon pairs via spontaneous parametric down-conversion using bulk crystals has been the cornerstone of modern quantum optics. However, future practical quantum technologies will require a scalable integration approach, and waveguide-based photon sources with high-count rate and low-noise characteristics will be an essential part of chip-based quantum technologies. Here, we demonstrate photon pair generation through spontaneous four-wave mixing in a silicon micro-ring resonator, reporting separately a maximum coincidence-to-accidental (CAR) ratio of 602 ± 37 (for a generation rate of 827kHz), and a maximum photon pair generation rate of 123 MHz ± 11 kHz (with a CAR value of 37). To overcome freecarrier related performance degradations we have investigated reverse biased p-i-n structures, demonstrating an improvement in the pair generation rate by a factor of up to 2 with negligible impact on CAR.
Original language | English |
---|---|
Pages (from-to) | 27826-27834 |
Number of pages | 9 |
Journal | Optics Express |
Volume | 21 |
Issue number | 23 |
DOIs | |
Publication status | Published - 18 Nov 2013 |
Externally published | Yes |