Pharmacology-based molecular docking of 4-methylcatechol and its role in RANKL-mediated ROS/Keap1/Nrf2 signalling axis and osteoclastogenesis

Yang Xu, Dezhi Song, Yuangang Su, Junchun Chen, Liwei Wu, Haoyu Lian, Na Hai, Jing li, Jie Jiang, Jinmin Zhao, Jiake Xu, Qian Liu

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

4-Methylcatechol (4-MC) is an agonist of various neurotrophic factors, which can upregulate the expression of Heme oxygenase 1 (HO-1) protein by activating nuclear factor erythroid 2-related factor 2 (Nrf2), thereby inhibiting oxidative stress-induced neural stem cell death. During RANKL-stimulated osteoclast differentiation, intracellular reactive oxygen species (ROS) levels were increased. Nonetheless, the effect of 4-MC on osteoclast formation and bone resorption function has not been researched. In this study, we investigated the effect of HO-1 upregulation by 4-MC on RANKL-induced osteoclastogenesis and explored the molecular mechanism of HO-1 upregulation by 4-MC. We found that the small molecule compound 4-MC could bind to Keap1 amino acid residue of glycine GLY 367, isoleucine ILE 559 and valine VAL 606, with a predicted binding energy of −4.99 kcal/mol. 4-MC was found to inhibit osteoclast differentiation in vitro by activating Nrf2 to scavenge ROS, inhibiting NF-κB phosphorylation, and alleviating osteoporosis in ovariectomized (OVX) mice. Taken together, 4-MC reduces ROS by inhibiting Keap1, thereby preventing OVX-induced bone loss.

Original languageEnglish
Article number114101
JournalBiomedicine and Pharmacotherapy
Volume159
DOIs
Publication statusPublished - Mar 2023

Fingerprint

Dive into the research topics of 'Pharmacology-based molecular docking of 4-methylcatechol and its role in RANKL-mediated ROS/Keap1/Nrf2 signalling axis and osteoclastogenesis'. Together they form a unique fingerprint.

Cite this