Research output per year
Research output per year
Gereltsetseg Enkhbat, Megan H. Ryan, Phillip G.H. Nichols, Kevin J. Foster, Yoshiaki Inukai, William Erskine
Research output: Contribution to journal › Article › peer-review
Background and aims: The pasture legume Trifolium subterraneum ssp. yanninicum exhibits waterlogging tolerance. This study investigates diversity for waterlogging tolerance within ssp. yanninicum. We tested the hypotheses that (1) variation for waterlogging tolerance exists within ssp. yanninicum and (2) is related to phenotypic and growth trait differences, which (3) reflect eco-geographic variables at site of origin. Methods: Twenty-eight diverse ssp. yanninicum ecotypes collected from the Mediterranean region and four cultivars were grown in a controlled environment glasshouse. Seedling traits were measured at 14 and 21 days after sowing. Waterlogged and free-draining (control) treatments were then imposed for 28 days. Relative distance and multivariate plasticity indices were calculated. Results: Under waterlogging, shoot (87–108% of controls) and root (80–116% of controls) relative growth rates (RGRs) differed significantly among ssp. yanninicum. Waterlogging tolerance, as assessed by shoot RGR, had strong positive correlations with root RGR (r = 0.86; P < 0.001), petiole length (r = 0.59; P < 0.001) and leaf size (r = 0.55; P < 0.01) under waterlogging. The proportion of biomass as leaf increased under waterlogging, due to leaf size being maintained (mean 102% of controls), but petiole length decreased (mean 84% of controls). Petiole length was the most plastic trait. Seed size, seedling traits, maturity duration and eco-geographic variables at site of origin were not related to waterlogging tolerance. Conclusions: Wide variation in waterlogging tolerance exists within ssp. yanninicum. Petiole length reduction, an easy-to-measure and non-destructive indicator, could be used as a preliminary selection tool when screening large numbers of ssp. yanninicum for waterlogging tolerance in a breeding program.
Original language | English |
---|---|
Pages (from-to) | 645-667 |
Number of pages | 23 |
Journal | Plant and Soil |
Volume | 475 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - Jun 2022 |
Research output: Thesis › Doctoral Thesis