Projects per year
Abstract
Marine heatwaves (MHWs), discrete periods of extreme warm water temperatures superimposed onto persistent ocean warming, have increased in frequency and significantly disrupted marine ecosystems. While field observations on the ecological consequences of MHWs are growing, a mechanistic understanding of their direct effects is rare. We conducted an outdoor tank experiment testing how different thermal stressor profiles impacted the ecophysiological performance of three dominant forest-forming seaweeds. Four thermal scenarios were tested: contemporary summer temperature (22°C), low persistent warming (24°C), a discrete MHW (22–27°C), and temperature variability followed by a MHW (22–24°C, 22–27°C). The physiological performance of seaweeds was strongly related to thermal profile and varied among species, with the highest temperature not always having the strongest effect. MHWs were highly detrimental for the fucoid Phyllospora comosa, whereas the laminarian kelp Ecklonia radiata showed sensitivity to extended thermal stress and demonstrated a cumulative temperature threshold. The fucoid Sargassum linearifolium showed resilience, albeit with signs of decline with bleached and degraded fronds, under all conditions, with stronger decline under stable control and warming conditions. The varying responses of these three co-occurring forest-forming seaweeds under different temperature scenarios suggests that the impact of ocean warming on near shore ecosystems may be complex and will depend on the specific thermal profile of rising water temperatures relative to the vulnerability of different species.
Original language | English |
---|---|
Pages (from-to) | 22-35 |
Number of pages | 14 |
Journal | Journal of Phycology |
Volume | 58 |
Issue number | 1 |
Early online date | Nov 2021 |
DOIs | |
Publication status | Published - Feb 2022 |
Fingerprint
Dive into the research topics of 'Persistence of seaweed forests in the anthropocene will depend on warming and marine heatwave profiles'. Together they form a unique fingerprint.Projects
- 3 Finished
-
Marine heatwaves drive loss of genetic diversity and selection in kelps
Wernberg, T. & Coleman, M.
ARC Australian Research Council
1/12/20 → 30/06/24
Project: Research
-
Global threats to kelp forests from heatwaves, herbivores and diseases
Wernberg, T., Verges, A. & Steinberg, P.
ARC Australian Research Council
1/01/17 → 30/06/20
Project: Research
-
Genes to ecosystems: drivers of resilience in underwater marine forests
Wernberg, T. & Coleman, M.
ARC Australian Research Council
1/01/16 → 30/06/19
Project: Research