TY - JOUR
T1 - Pathway Analysis Integrating Genome-Wide and Functional Data Identifies PLCG2 as a Candidate Gene for Age-Related Macular Degeneration
AU - Int Age-Related Macular Degenerati
AU - Waksmunski, Andrea R.
AU - Grunin, Michelle
AU - Kinzy, Tyler G.
AU - Igo, Robert P.
AU - Haines, Jonathan L.
AU - Bailey, Jessica N. Cooke
AU - Fritsche, Lars G.
AU - Igl, Wilmar
AU - Grassmann, Felix
AU - Sengupta, Sebanti
AU - Bragg-Gresham, Jennifer L.
AU - Burdon, Kathryn P.
AU - Hebbring, Scott J.
AU - Wen, Cindy
AU - Gorski, Mathias
AU - Kim, Ivana K.
AU - Cho, David
AU - Zack, Donald
AU - Souied, Eric
AU - Scholl, Hendrik P. N.
AU - Bala, Elisa
AU - Lee, Kristine E.
AU - Hunter, David J.
AU - Sardell, Rebecca J.
AU - Mitchell, Paul
AU - Merriam, Joanna E.
AU - Cipriani, Valentina
AU - Hoffman, Joshua D.
AU - Schick, Tina
AU - Lechanteur, Yara T. E.
AU - Guymer, Robyn H.
AU - Johnson, Matthew P.
AU - Jiang, Yingda
AU - Stanton, Chloe M.
AU - Buitendijk, Gabrielle H. S.
AU - Zhan, Xiaowei
AU - Kwong, Alan M.
AU - Boleda, Alexis
AU - Brooks, Matthew
AU - Gieser, Linn
AU - Ratnapriya, Rinki
AU - Branham, Kari E.
AU - Foerster, Johanna R.
AU - Heckenlively, John R.
AU - Othman, Mohammad
AU - Vote, Brendan J.
AU - Liang, Helena Hai
AU - Souzeau, Emmanuelle
AU - McAllister, Ian L.
AU - Isaacs, Timothy
AU - Hall, Janette
AU - Lake, Stewart
AU - Mackey, David A.
AU - Constable, Ian J.
AU - Craig, Jamie E.
AU - Kitchner, Terrie E.
AU - Yang, Zhenglin
AU - Su, Zhiguang
AU - Luo, Hongrong
AU - Chen, Daniel
AU - Ouyang, Hong
AU - Flagg, Ken
AU - Lin, Danni
AU - Mao, Guanping
AU - Ferreyra, Henry
AU - Stark, Klaus
AU - von Strachwitz, Claudia N.
AU - Wolf, Armin
AU - Brandl, Caroline
AU - Rudolph, Guenther
AU - Olden, Matthias
AU - Morrison, Margaux A.
AU - Morgan, Denise J.
AU - Schu, Matthew
AU - Ahn, Jeeyun
AU - Silvestri, Giuliana
AU - Tsironi, Evangelia E.
AU - Park, Kyu Hyung
AU - Farrer, Lindsay A.
AU - Orlin, Anton
AU - Brucker, Alexander
AU - Li, Mingyao
AU - Curcio, Christine A.
AU - Mohand-Said, Saddek
AU - Sahel, Jose-Alain
AU - Audo, Isabelle
AU - Benchaboune, Mustapha
AU - Cree, Angela J.
AU - Rennie, Christina A.
AU - Goverdhan, Srinivas
AU - Hagbi-Levi, Shira
AU - Campochiaro, Peter
AU - Katsanis, Nicholas
AU - Holz, Frank G.
AU - Blond, Frederic
AU - Blanche, Helene
AU - Deleuze, Jean-Francois
AU - Truitt, Barbara
AU - Peachey, Neal S.
AU - Meuer, Stacy M.
AU - Myers, Chelsea E.
AU - Moore, Emily L.
AU - Klein, Ronald
AU - Hauser, Michael A.
AU - Postel, Eric A.
AU - Courtenay, Monique D.
AU - Schwartz, Stephen G.
AU - Kovach, Jaclyn L.
AU - Scott, William K.
AU - Liew, Gerald
AU - Tan, Ava G.
AU - Gopinath, Bamini
AU - Merriam, John C.
AU - Smith, R. Theodore
AU - Khan, Jane C.
AU - Shahid, Humma
AU - Moore, Anthony T.
AU - McGrath, J. Allie
AU - Laux, Renee
AU - Brantley, Milam A.
AU - Agarwal, Anita
AU - Ersoy, Lebriz
AU - Caramoy, Albert
AU - Langmann, Thomas
AU - Saksens, Nicole T. M.
AU - de Jong, Eiko K.
AU - Hoyng, Carel B.
AU - Cain, Melinda S.
AU - Richardson, Andrea J.
AU - Martin, Tammy M.
AU - Blangero, John
AU - Weeks, Daniel E.
AU - Dhillon, Bal
AU - van Duijn, Cornelia M.
AU - Doheny, Kimberly F.
AU - Romm, Jane
AU - Klaver, Caroline C. W.
AU - Hayward, Caroline
AU - Gorin, Michael B.
AU - Klein, Michael L.
AU - Baird, Paul N.
AU - den Hollander, Anneke
AU - Fauser, Sascha
AU - Yates, John R. W.
AU - Allikmets, Rando
AU - Wang, Jie Jin
AU - Schaumberg, Debra A.
AU - Klein, Barbara E. K.
AU - Hagstrom, Stephanie A.
AU - Chowers, Itay
AU - Lotery, Andrew J.
AU - Leveillard, Thierry
AU - Zhang, Kang
AU - Brilliant, Murray H.
AU - Hewitt, Alex W.
AU - Swaroop, Anand
AU - Chew, Emily Y.
AU - Pericak-Vance, Margaret A.
AU - DeAngelis, Margaret
AU - Stambolian, Dwight
AU - Iyengar, Sudha K.
AU - Weber, Bernhard H. F.
AU - Abecasis, Goncalo R.
AU - Heid, Iris M.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - PURPOSE. Age-related macular degeneration (AMD) is the worldwide leading cause of blindness among the elderly. Although genome-wide association studies (GWAS) have identified AMD risk variants, their roles in disease etiology are not well-characterized, and they only explain a portion of AMD heritability.METHODS. We performed pathway analyses using summary statistics from the International AMD Genomics Consortium's 2016 GWAS and multiple pathway databases to identify biological pathways wherein genetic association signals for AMD may be aggregating. We determined which genes contributed most to significant pathway signals across the databases. We characterized these genes by constructing protein-protein interaction networks and performing motif analysis.RESULTS. We determined that eight genes (C2, C3, LIPC, MICA, NOTCH4, PLCG2, PPARA, and RAD51B) "drive'' the statistical signals observed across pathways curated in the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and Gene Ontology (GO) databases. We further refined our definition of statistical driver gene to identify PLCG2 as a candidate gene for AMD due to its significant gene-level signals (P CONCLUSIONS. We performed pathway analyses on the largest available collection of advanced AMD cases and controls in the world. Eight genes strongly contributed to significant pathways from the three larger databases, and one gene (PLCG2) was central to significant pathways from all four databases. This is, to our knowledge, the first study to identify PLCG2 as a candidate gene for AMD based solely on genetic burden. Our findings reinforce the utility of integrating in silico genetic and biological pathway data to investigate the genetic architecture of AMD.
AB - PURPOSE. Age-related macular degeneration (AMD) is the worldwide leading cause of blindness among the elderly. Although genome-wide association studies (GWAS) have identified AMD risk variants, their roles in disease etiology are not well-characterized, and they only explain a portion of AMD heritability.METHODS. We performed pathway analyses using summary statistics from the International AMD Genomics Consortium's 2016 GWAS and multiple pathway databases to identify biological pathways wherein genetic association signals for AMD may be aggregating. We determined which genes contributed most to significant pathway signals across the databases. We characterized these genes by constructing protein-protein interaction networks and performing motif analysis.RESULTS. We determined that eight genes (C2, C3, LIPC, MICA, NOTCH4, PLCG2, PPARA, and RAD51B) "drive'' the statistical signals observed across pathways curated in the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and Gene Ontology (GO) databases. We further refined our definition of statistical driver gene to identify PLCG2 as a candidate gene for AMD due to its significant gene-level signals (P CONCLUSIONS. We performed pathway analyses on the largest available collection of advanced AMD cases and controls in the world. Eight genes strongly contributed to significant pathways from the three larger databases, and one gene (PLCG2) was central to significant pathways from all four databases. This is, to our knowledge, the first study to identify PLCG2 as a candidate gene for AMD based solely on genetic burden. Our findings reinforce the utility of integrating in silico genetic and biological pathway data to investigate the genetic architecture of AMD.
KW - age-related macular degeneration
KW - pathway analysis
KW - genome-wide association study
KW - database
KW - phospholipase C gamma 2
KW - GROWTH-FACTOR RECEPTOR
KW - PHOSPHATIDYLINOSITOL 3-KINASE
KW - CELL-SURVIVAL
KW - ACTIVATION
KW - ASSOCIATION
KW - VARIANTS
KW - NETWORKS
KW - THERAPY
KW - RARE
U2 - 10.1167/iovs.19-27827
DO - 10.1167/iovs.19-27827
M3 - Article
C2 - 31560769
SN - 0146-0404
VL - 60
SP - 4041
EP - 4051
JO - Investigative ophthalmology & visual science
JF - Investigative ophthalmology & visual science
IS - 12
ER -