Palaeozoic palaeomagnetic studies, in the Welsh Basin-recent advances

J. E.T. Channell, C. Mccabe, T. H. Torsvik, A. Trench, N. H. Woodcock

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


In the last two years, new palaeomagnetic data from Wales have resulted in radical revision of the Ordovician palaeogeography of Eastern Avalonia, part of the southern margin of the Iapetus Ocean. Combined with Palaeozoic palaeomagnetic data from Laurentia and Gondwana, these data suggest that Eastern Avalonia was a peri-Gondwanide high latitude continental fragment during at least part of Ordovician time, with a palaeolatitude of about 62° S and 51° S in Arenig and Llanvirn time, respectively. This implies a latitudinal width of the early Ordovician Iapetus Ocean between Eastern Avalonia and Laurentia of at least 30°. Geological evidence for the proximity of Eastern Avalonia and Laurentia suggests that the intervening Iapetus Ocean closed during Silurian time, from late Llandovery to early Ludlow. Recent palaeolatitude data from the Iapetus bordering continents are consistent with closure by middle to late Silurian time. New pre-Acadian early Devonian palaeomagnetic data from the Old Red Sandstone places the Welsh Basin at about 17° S, consistent with a palaeogeography in which Laurentia, Baltica, Avalonia, Armorica, and possibly Gondwana, were part of a single supercontinent. Pervasive late Carboniferous/early Permian remagnetization affects the Welsh Basin. The remagnetization is probably associated with fluids emanating from the Variscan thrust front. We do not observe remagnetization associated with Acadian orogeny and the remagnetizations, which have been studied in more detail in North America, appear to be a unique feature of the Variscan-Hercynian-Alleghenian orogeny.

Original languageEnglish
Pages (from-to)533-542
Number of pages10
JournalGeological Magazine
Issue number5
Publication statusPublished - 1 Jan 1992


Dive into the research topics of 'Palaeozoic palaeomagnetic studies, in the Welsh Basin-recent advances'. Together they form a unique fingerprint.

Cite this