Projects per year
Abstract
We propose a robust algorithm for constructing first return maps of dynamical systems from time series without the need for embedding. A first return map is typically constructed using a convenient heuristic (maxima or zero-crossings of the time series, for example) or a computationally nuanced geometric approach (explicitly constructing a Poincaré section from a hyper-surface normal to the flow and then interpolating to determine intersections with trajectories). Our method is based on ordinal partitions of the time series, and the first return map is constructed from successive intersections with specific ordinal sequences. We can obtain distinct first return maps for each ordinal sequence in general. We define entropy-based measures to guide our selection of the ordinal sequence for a “good” first return map and show that this method can robustly be applied to time series from classical chaotic systems to extract the underlying first return map dynamics. The results are shown for several well-known dynamical systems (Lorenz, Rössler, and Mackey-Glass in chaotic regimes).
Original language | English |
---|---|
Article number | 053109 |
Journal | Chaos |
Volume | 33 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 May 2023 |
Fingerprint
Dive into the research topics of 'Ordinal Poincaré sections: Reconstructing the first return map from an ordinal segmentation of time series'. Together they form a unique fingerprint.Projects
- 1 Active
-
TSuNAMi: Time Series Network Animal Modelling
Small, M. (Investigator 02), Walker, D. (Investigator 02), Correa, D. (Investigator 03) & Blache, D. (Investigator 04)
ARC Australian Research Council
1/09/20 → 31/08/25
Project: Research