Abstract
High resolution visualization of optical coherence tomography (OCT) and OCT angiography (OCT-A) data is required to fully take advantage of the imaging modality's three-dimensional nature. However, artifacts induced by patient motion often degrade OCT-A data quality. This is especially true for patients with deteriorated focal vision, such as those with diabetic retinopathy (DR). We propose a novel methodology for software-based OCT-A motion correction achieved through serial acquisition, volumetric registration, and averaging. Motion artifacts are removed via a multi-step 3D registration process, and visibility is significantly enhanced through volumetric averaging. We demonstrate that this method permits clear 3D visualization of retinal pathologies and their surrounding features, 3D visualization of inner retinal capillary connections, as well as reliable visualization of the choriocapillaris layer.
Original language | English |
---|---|
Pages (from-to) | 553-570 |
Number of pages | 18 |
Journal | Biomedical Optics Express |
Volume | 12 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2021 |