Optical coherence tomography: technology enhancements and novel applications

Konkaduwa Silva

Research output: ThesisDoctoral Thesis

1005 Downloads (Pure)

Abstract

In the last fifteen years, a great deal of effort has been put forth, worldwide, for investigating and enhancing various aspects of optical coherence tomography (OCT). This thesis begins with a description of the technique of OCT, and an analysis of its underlying theory. The design and construction of an OCT system is described, with particular emphasis on a novel delay scanning method, and novel signal processing. Application of OCT to non-destructive characterisation of seeds, examination of skin lesions, measurement of fluid flow, and refractive index determination, are then demonstrated. Two technological enhancements to OCT are presented in this thesis. The first, an extended-range Fourier domain optical delay line (FDODL), extends the scan range of the traditional FDODL by a factor of almost 9, by scanning the galvanometer mirror around the region of zero tilt-angle. Polarisation optics are used to prevent light coupling back into the interferometer after only a single pass through the FDODL. A non-coplanar version of the FDODL is also presented, which overcomes the losses associated with the polarisation-based design, but trades off scan range to do so. Both versions of FDODL demonstrated excellent linearity and scan uniformity. The second technology presented here, bifocal optical coherence refractometry (BOCR), affords OCT the ability to measure refractive indices within turbid media. It achieves this by generating two confocal gates within the sample. From knowledge of the system parameters, and measurements of the confocal gate separation, the refractive index within the medium is evaluated to within ±0.01. Refractive index mapping is then demonstrated in a number of turbid samples.
Original languageEnglish
QualificationDoctor of Philosophy
Publication statusUnpublished - 2003

Fingerprint

Dive into the research topics of 'Optical coherence tomography: technology enhancements and novel applications'. Together they form a unique fingerprint.

Cite this