Abstract
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.
Original language | English |
---|---|
Article number | 29 |
Journal | Astrophysical Journal, Supplement Series |
Volume | 267 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Aug 2023 |
Fingerprint
Dive into the research topics of 'Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Astrophysical Journal, Supplement Series, Vol. 267, No. 2, 29, 01.08.2023.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
AU - The LIGO Scientific Collaboration, the Virgo Collaboration, and the KAGRA Collaboration)
AU - Abbott, R.
AU - Abe, H.
AU - Acernese, F.
AU - Ackley, K.
AU - Adhicary, S.
AU - Adhikari, N.
AU - Adhikari, R. X.
AU - Adkins, V. K.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agarwal, D.
AU - Agathos, M.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Akutsu, T.
AU - Albanesi, S.
AU - Alfaidi, R. A.
AU - Al-Jodah, A.
AU - Alléné, C.
AU - Allocca, A.
AU - Almualla, M.
AU - Altin, P. A.
AU - Amato, A.
AU - Amez-Droz, L.
AU - Amorosi, A.
AU - Anand, S.
AU - Ananyeva, A.
AU - Andersen, R.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Andia, M.
AU - Ando, M.
AU - Andrade, T.
AU - Andres, N.
AU - Andrés-Carcasona, M.
AU - Andrić, T.
AU - Ansoldi, S.
AU - Antelis, J. M.
AU - Antier, S.
AU - Aoumi, M.
AU - Apostolatos, T.
AU - Appavuravther, E. Z.
AU - Appert, S.
AU - Apple, S. K.
AU - Arai, K.
AU - Araya, A.
AU - Araya, M. C.
AU - Areeda, J. S.
AU - Arène, M.
AU - Aritomi, N.
AU - Arnaud, N.
AU - Arogeti, M.
AU - Aronson, S. M.
AU - Arun, K. G.
AU - Asada, H.
AU - Ashton, G.
AU - Aso, Y.
AU - Assiduo, M.
AU - Assis de Souza Melo, S.
AU - Aston, S. M.
AU - Astone, P.
AU - Aubin, F.
AU - AultONeal, K.
AU - Babak, S.
AU - Badalyan, A.
AU - Badaracco, F.
AU - Badger, C.
AU - Bae, S.
AU - Bagnasco, S.
AU - Bai, Y.
AU - Baier, J. G.
AU - Baiotti, L.
AU - Baird, J.
AU - Bajpai, R.
AU - Baka, T.
AU - Ball, M.
AU - Ballardin, G.
AU - Ballmer, S. W.
AU - Baltus, G.
AU - Banagiri, S.
AU - Banerjee, B.
AU - Bankar, D.
AU - Baral, P.
AU - Barayoga, J. C.
AU - Barber, J.
AU - Barish, B. C.
AU - Barker, D.
AU - Barneo, P.
AU - Barone, F.
AU - Barr, B.
AU - Barsotti, L.
AU - Barsuglia, M.
AU - Barta, D.
AU - Barthelmy, S. D.
AU - Barton, M. A.
AU - Bartos, I.
AU - Basak, S.
AU - Basalaev, A.
AU - Bassiri, R.
AU - Basti, A.
AU - Bawaj, M.
AU - Bayley, J. C.
AU - Baylor, A. C.
AU - Bazzan, M.
AU - Bécsy, B.
AU - Bedakihale, V. M.
AU - Beirnaert, F.
AU - Bejger, M.
AU - Bell, A. S.
AU - Benedetto, V.
AU - Beniwal, D.
AU - Benoit, W.
AU - Bentley, J. D.
AU - Ben Yaala, M.
AU - Bera, S.
AU - Berbel, M.
AU - Bergamin, F.
AU - Berger, B. K.
AU - Bernuzzi, S.
AU - Beroiz, M.
AU - Berry, C. P.L.
AU - Bersanetti, D.
AU - Bertolini, A.
AU - Betzwieser, J.
AU - Beveridge, D.
AU - Bevins, N.
AU - Bhandare, R.
AU - Bhandari, A. V.
AU - Bhardwaj, U.
AU - Bhatt, R.
AU - Bhattacharjee, D.
AU - Bhaumik, S.
AU - Bianchi, A.
AU - Bilenko, I. A.
AU - Bilicki, M.
AU - Billingsley, G.
AU - Bini, S.
AU - Birnholtz, O.
AU - Biscans, S.
AU - Bischi, M.
AU - Biscoveanu, S.
AU - Bisht, A.
AU - Biswas, B.
AU - Bitossi, M.
AU - Bizouard, M. A.
AU - Blackburn, J. K.
AU - Blair, C. D.
AU - Blair, D. G.
AU - Blair, R. M.
AU - Bobba, F.
AU - Bode, N.
AU - Boër, M.
AU - Bogaert, G.
AU - Boileau, G.
AU - Boldrini, M.
AU - Bolingbroke, G. N.
AU - Bonavena, L. D.
AU - Bondarescu, R.
AU - Bondu, F.
AU - Bonilla, E.
AU - Bonilla, G. S.
AU - Bonnand, R.
AU - Booker, P.
AU - Bork, R.
AU - Boschi, V.
AU - Bose, N.
AU - Bose, S.
AU - Bossilkov, V.
AU - Boudart, V.
AU - Bouffanais, Y.
AU - Bozzi, A.
AU - Bradaschia, C.
AU - Brady, P. R.
AU - Braglia, M.
AU - Branch, A.
AU - Branchesi, M.
AU - Brau, J. E.
AU - Breschi, M.
AU - Briant, T.
AU - Brillet, A.
AU - Brinkmann, M.
AU - Brockill, P.
AU - Brooks, A. F.
AU - Brooks, J.
AU - Brown, D. D.
AU - Brunett, S.
AU - Bruno, G.
AU - Bruntz, R.
AU - Bryant, J.
AU - Bucci, F.
AU - Buchanan, J.
AU - Bulashenko, O.
AU - Bulik, T.
AU - Bulten, H. J.
AU - Buonanno, A.
AU - Burtnyk, K.
AU - Buscicchio, R.
AU - Buskulic, D.
AU - Buy, C.
AU - Byer, R. L.
AU - Cabourn Davies, G. S.
AU - Cabras, G.
AU - Cabrita, R.
AU - Cadonati, L.
AU - Caesar, S.
AU - Cagnoli, G.
AU - Cahillane, C.
AU - Calderón Bustillo, J.
AU - Callaghan, J. D.
AU - Callister, T. A.
AU - Calloni, E.
AU - Camp, J. B.
AU - Canepa, M.
AU - Caneva Santoro, G.
AU - Cannavacciuolo, M.
AU - Cannon, K. C.
AU - Cao, H.
AU - Cao, Z.
AU - Capistran, L. A.
AU - Capocasa, E.
AU - Capote, E.
AU - Carapella, G.
AU - Carbognani, F.
AU - Carlassara, M.
AU - Chatterjee, C.
AU - Chen, X.
AU - Choudhary, S.
AU - Coward, D. M.
AU - Danilishin, S.
AU - Degallaix, J.
AU - Diamond, P. Z.
AU - Gould, D. W.
AU - Howell, E. J.
AU - JaberianHamedan, V.
AU - Liu, Jian
AU - Jones, A. W.
AU - Ju, L.
AU - Kaur, T.
AU - Kovalam, M.
AU - Mcleod, A.
AU - Neil, B. F.
AU - Page, M. A.
AU - Panther, F. H.
AU - Satari, H.
AU - Slaven-Blair, T. J.
AU - van Heijningen, J. V.
AU - Veitch, P. J.
AU - Wen, L.
AU - Zhu, X. J.
AU - Zhao, C.
N1 - Funding Information: Calibration of the LIGO strain data was performed with a GstLAL-based calibration software pipeline (Viets et al. 2018). Calibration of the Virgo strain data was performed with C-based software (Acernese et al. 2022b). Data quality products and event-validation results were computed using the DMT (https://labcit.ligo.caltech.edu/~jzweizig/DMT-Project. html), DQR (https://docs.ligo.org/detchar/data-quality-report/), DQSEGDB (Fisher et al. 2021), gwdetchar (Macloed et al. 2021a), hveto (Smith et al. 2011), iDQ (Essick et al. 2020), and Omicron (Robinet et al. 2020) software packages and contributing software tools. Analyses relied upon the LALSuite software library (LIGO Scientific Collaboration 2018). PESummary was used to postprocess and collate parameter estimation results (Hoy & Raymond 2021). For an exhaustive list of the software used for searching the GW signals and characterizing their source, see Abbott et al. (2021c). Plots were prepared with Matplotlib (Hunter 2007), seaborn (Waskom 2021), GWSumm (Macleod et al. 2021b), and GWpy (Macleod et al. 2021c). NumPy (Harris et al. 2020) and SciPy (Virtanen et al. 2020) were used in the preparation of the manuscript. This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research (NWO) for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d'Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union - European Regional Development Fund; Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRSFNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A, Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF), Computing Infrastructure Project of Global Science experimental Data hub Center (GSDC) at KISTI, Korea Astronomy and Space Science Institute (KASI), and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the National Science and Technology Council (NSTC) in Taiwan under grants including the Rising Star Program and Science Vanguard Research Program, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK. Funding Information: This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO 600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Netherlands Organization for Scientific Research (NWO) for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons Europeus, Universitat i Cultura and the Direcció General de Política Universitaria i Recerca del Govern de les Illes Balears, the Conselleria d'Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the European Union – European Regional Development Fund; Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Social Funds (ESF), the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources. Funding Information: This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A, Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF), Computing Infrastructure Project of Global Science experimental Data hub Center (GSDC) at KISTI, Korea Astronomy and Space Science Institute (KASI), and Ministry of Science and ICT (MSIT) in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the National Science and Technology Council (NSTC) in Taiwan under grants including the Rising Star Program and Science Vanguard Research Program, Advanced Technology Center (ATC) of NAOJ, and Mechanical Engineering Center of KEK. Publisher Copyright: © 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/8/1
Y1 - 2023/8/1
N2 - The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.
AB - The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.
UR - http://www.scopus.com/inward/record.url?scp=85172242508&partnerID=8YFLogxK
U2 - 10.3847/1538-4365/acdc9f
DO - 10.3847/1538-4365/acdc9f
M3 - Article
AN - SCOPUS:85172242508
SN - 0067-0049
VL - 267
JO - Astrophysical Journal, Supplement Series
JF - Astrophysical Journal, Supplement Series
IS - 2
M1 - 29
ER -