One-Pot Multienzymatic Transformation of NH3, CO2, and Ornithine into the Organic Nitrogen Plant Fertilizer Citrulline Using a Single Recombinant Lysate of E. coli

Apostolos Alissandratos, Carol J. Hartley, Nigel G. French, Hye Kyung Kim, Susan Allen, Gonzalo M. Estavillo, Colin Scott, Christopher J. Easton

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Biocatalytic transformation of carbamate formed readily from CO2 and NH3 provides attractive green routes for mitigation of these important environmental pollutants. Accordingly, a coupled-enzyme system was developed for the one-pot production of citrulline through carbamoylation of ornithine in aqueous solutions of CO2 and NH3. Hyperthermophilic ornithine carbamoyltransferases are produced recombinantly in E. coli with carbamate kinases known to have a propensity for carbamoyl phosphate synthesis. Importantly, in vitro biocatalysis is carried out by E. coli cell lysate prepared through coexpression of the required recombinant enzymes in a single bacterial culture, greatly reducing limitations normally associated with protein production and purification. Acetate kinase that is endogenous in the lysate also recycles the required ATP cofactor, which would otherwise have been required in costly stoichiometric amounts. Recombinant lysates catalyze the production of carbamoyl phosphate with substoichiometric ATP (>300 turnovers) as well as its in situ reaction with ornithine to give citrulline in high yield (>95%) and g L-1 h-1 titers. The system is active over a wide range of NH3 concentrations (2.5 mM - 2 M), and >90% conversions of NH3 may be reached within 1.5 h. Aqueous NH3 used to sequester CO2 gas (10% v/v) may be directly used as the biocatalyst feedstock. In preliminary studies, citrulline is found to be an effective organic nitrogen fertilizer of the wheat grass Brachypodium distachyon. Therefore, lysates described here constitute a cost-effective biocatalytic platform for one-pot production of a promising organic nitrogen fertilizer, under mild reaction conditions, from environmental pollutants as feedstock.

Original languageEnglish
Pages (from-to)8522-8529
Number of pages8
JournalACS Sustainable Chemistry and Engineering
Volume7
Issue number9
DOIs
Publication statusPublished - 6 May 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'One-Pot Multienzymatic Transformation of NH3, CO2, and Ornithine into the Organic Nitrogen Plant Fertilizer Citrulline Using a Single Recombinant Lysate of E. coli'. Together they form a unique fingerprint.

Cite this