TY - JOUR
T1 - On the dimension of twisted centralizer codes
AU - Alahmadi, Adel
AU - Glasby, S. P.
AU - Praeger, Cheryl E.
PY - 2017/11/1
Y1 - 2017/11/1
N2 - Given a field F, a scalar λ∈F and a matrix A∈Fn×n, the twisted centralizer code CF(A,λ):={B∈Fn×n|AB−λBA=0} is a linear code of length n2 over F. When A is cyclic and λ≠0 we prove that dimCF(A,λ)=deg(gcd(cA(t),λncA(λ−1t))) where cA(t) denotes the characteristic polynomial of A. We also show how CF(A,λ) decomposes, and we estimate the probability that CF(A,λ) is nonzero when |F| is finite. Finally, we prove dimCF(A,λ)⩽n2/2 for λ∉{0,1} and ‘almost all’ n×n matrices A over F.
AB - Given a field F, a scalar λ∈F and a matrix A∈Fn×n, the twisted centralizer code CF(A,λ):={B∈Fn×n|AB−λBA=0} is a linear code of length n2 over F. When A is cyclic and λ≠0 we prove that dimCF(A,λ)=deg(gcd(cA(t),λncA(λ−1t))) where cA(t) denotes the characteristic polynomial of A. We also show how CF(A,λ) decomposes, and we estimate the probability that CF(A,λ) is nonzero when |F| is finite. Finally, we prove dimCF(A,λ)⩽n2/2 for λ∉{0,1} and ‘almost all’ n×n matrices A over F.
KW - Dimension
KW - Linear code
KW - Twisted centralizer code
UR - http://www.scopus.com/inward/record.url?scp=85026727086&partnerID=8YFLogxK
U2 - 10.1016/j.ffa.2017.07.005
DO - 10.1016/j.ffa.2017.07.005
M3 - Article
AN - SCOPUS:85026727086
SN - 1071-5797
VL - 48
SP - 43
EP - 59
JO - Finite Fields and Their Applications
JF - Finite Fields and Their Applications
ER -